Effects of argon plasma treatment on the osteoconductivity of bone grafting materials

  • Luigi CanulloEmail author
  • Tullio Genova
  • Mia Rakic
  • Anton Sculean
  • Richard Miron
  • Maurizio Muzzi
  • Stefano Carossa
  • Federico Mussano
Original Article



The osteoconductive properties of bone grafting materials represent one area of research for the management of bony defects found in the fields of periodontology and oral surgery. From a physico-chemical aspect, the wettability of the graft has been demonstrated to be one of the most important factors for new bone formation. It is also well-known that argon plasma treatment (PAT) and ultraviolet irradiation (UV) may increase the surface wettability and, consequently, improve the regenerative potential of the bone grafts. Therefore, the aim of the present in vitro study was to evaluate the effect of PAT and UV treatment on the osteoconductive potential of various bone grafts.

Materials and methods

The following four frequently used bone grafts were selected for this study: synthetic hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical xenogenic bone matrices (CaBM, CoBM). Sixty-six serially numbered disks 10 mm in diameter were used for each graft material and randomly assigned to the following three groups: test 1 (PAT), test 2 (UV), and control (no treatment). Six samples underwent topographic analysis using SEM pre- and post-treatments to evaluate changes in surface topography/characteristics. Additionally, cell adhesion and cell proliferation were evaluated at 2 and 72 h respectively following incubation in a three-dimensional culture system utilizing a bioreactor. Furthermore, the effects of PAT and UV on immune cells were assessed by measuring the viability of human macrophages at 24 h.


The topographic analysis showed different initial morphologies of the commercial biomaterials (e.g., Mg-HA and BCP showed flat morphology; BM samples were extremely porous with high roughness). The surface analysis following experimental treatments did not demonstrate topographical difference when compared with controls. Investigation of cells demonstrated that PAT treatment significantly increased cell adhesion of all 4 evaluated bone substitutes, whereas UV failed to show any statistically significant differences. The viability test revealed no differences in terms of macrophage adhesion on any of the tested surfaces.


Within their limitations, the present results suggest that treatment of various bone grafting materials with PAT appears to enhance the osteoconductivity of bone substitutes in the early stage by improving osteoblast adhesion without concomitantly affecting macrophage viability.

Clinical relevance

Treatment of bone grafts with PAT appears to result in faster osseointegration of the bone grafting materials and may thus favorably influence bone regeneration.


Bone graft Plasma of argon Bio-activation Osseointegration Osteoconductivity 



Authors highly appreciated the skills and commitment of Dr. Audrenn Gautier in the supervision of the study and Dr. Henry Canullo for the scientific support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study is an in vitro study. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Sculean A, Chapple IL, Giannobile WV (2015) Wound models for periodontal and bone regeneration: the role of biologic research. Periodontol 68(1):7–20CrossRefGoogle Scholar
  2. 2.
    Sanz-Sánchez I, Ortiz-Vigón A, Sanz-Martín I, Figuero E, Sanz M (2015) Effectiveness of lateral bone augmentation on the alveolar crest dimension: a systematic review and meta-analysis. J Dent Res 94:128S–142SPubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sanz M, Vignoletti F (2015) Key aspects on the use of bone substitutes for bone regeneration of edentulous ridges. Dent Mater 31(6):640–647PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Araujo MG, Lindhe J (2009) Ridge preservation with the use of Bio-Oss collagen: a 6-month study in the dog. Clin Oral Implants Res 20(5):433–440PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Cornelini R, Cangini F, Martuscelli G, Wennstrom J (2004) Deproteinized bovine bone and biodegradable barrier membrane to support healing following immediate placement of transmucosal implants: a short-term controller clinical trial. Int J Periodontics Restorative Dent 24:555–563PubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen ST, Darby IB, Reynolds EC (2007) A prospective clinical study of non-submerged immediate implants. Clinical outcomes and esthetic results. Clin Oral Implants Res 18:552–562PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Chen ST, Buser D (2014) Esthetic outcomes following immediate and early implant placement in the anterior maxilla—a systematic review. Int J Oral Maxillofac Implants:186–215CrossRefGoogle Scholar
  8. 8.
    Raghoebar GM, Louwerse C, Kalk WW, Vissink A (2001) Morbidity of chin bone har- vesting. Clin Oral Implants Res 12:503–507PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lambert F, Bacevic M, Layrolle P, Schupbach P, Drion P, Rompen E (2017) Impact of biomaterial microtopography on bone regeneration: comparison of three hydroxyapatites. Clin Oral Implants Res 28:e201–e207PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Clementini M, Morlupi A, Canullo L, Agrestini C, Barlattani A (2012) Success rate of dental implants inserted in horizontal and vertical guided bone regenerated areas: a systematic review. Int J Oral Maxillofac Implants 41(7):847–852CrossRefGoogle Scholar
  11. 11.
    Thoma DS, Zeltner M, Hüsler J, Hämmerle CH, Jung RE (2015) Supplement Working Group 4 - EAO CC 2015 Short implants versus sinus lifting with longer implants to restore the posterior maxilla: a systematic review. Clin Oral Implants Res 26:154–169PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sculean A, Nikolidakis D, Schwarz F (2008) Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials - biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 35(8 Suppl):106–116PubMedCrossRefGoogle Scholar
  13. 13.
    Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, Gülly C, Gaßner R, Lepperdinger G (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6(6):745–757PubMedCrossRefGoogle Scholar
  14. 14.
    García-Gareta E, Coathup MJ, Blunn GW (2015) Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81:112–121PubMedCrossRefGoogle Scholar
  15. 15.
    Götz W, Reichert C, Canullo L, Jäger A, Heinemann F (2012) Coupling of osteogenesis and angiogenesis in bone substitute healing - a brief overview. Ann Anat 194(2):171–173PubMedCrossRefGoogle Scholar
  16. 16.
    Parizek M, Slepickova Kasalkova N, Bacakova L, Svindrych Z, Slepicka P, Bacakova M, Lisa V, Svorcik V (2013) Adhesion, growth, and maturation of vascular smooth muscle cells on low-density polyethylene grafted with bioactive substances. Biomed Res Int 37:14–30Google Scholar
  17. 17.
    Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V (2011) Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29:739–767PubMedCrossRefGoogle Scholar
  18. 18.
    Coelho PG, Giro G, Teixeira HS, Marin C, Witek L, Thompson VP, Tovar N, Silva NRF (2012) Argon-based atmospheric pressure plasma enhances early bone response to rough titanium surfaces. J Biomed Mater Res A 100:1901–1906PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Duske K, Koban I, Kindel E, Schröder K, Nebe B, Holtfreter B, Jablonowski L, Weltmann KD, Kocher T (2012) Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol 39:400–407PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Swart KM, Keller JC, Wightman JP, Draughn RA, Stanford CM, Michaels CM (1992) Short-term plasma-cleaning treatments enhance in vitro osteoblast attachment to titanium. J Oral Impl 18:130–137Google Scholar
  21. 21.
    Pistilli R, Genova T, Canullo L, Faga MG, Terlizzi ME, Gribaudo G, Mussano F (2018) Effect of bioactivation on traditional surfaces and zirconium nitride: adhesion and proliferation of preosteoblastic cells and bacteria. Int J Oral Maxillofac Implants 33(6):1247–1254PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi N (2002) Plasma sterilization. Methods and mechanisms. Pure Ap Chem 74:349–358CrossRefGoogle Scholar
  23. 23.
    Canullo L, Micarelli C, Lembo-Fazio L, Iannello G, Clementini M (2014) Microscopical and microbiologic characterization of customized titanium abutments after different cleaning procedures. Clin Oral Implants Res 25(3):328–336PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 74:49–58PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Canullo L, Genova T, Naenni N, Masuda K, Mussano F (2018) Plasma of argon enhances the adhesion of murine. Ann Anat 218:265270 PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Aita H, Att W, Ueno T, Yamada M, Hori N, Iwasa F, Tsukimura N, Ogawa T (2009) Ultraviolet light-mediated photofunctionalization of titanium to promotehuman mesenchymal stem cell migration, attachment, proliferation and differentiation. Acta Biomater 5(8):3247–3257PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Genova T, Pesce P, Mussano F, Tanaka K, Canullo L (2019) The influence of bone-graft biofunctionalization with plasma of argon on bacterial contamination. J Biomed Mater Res A 107(1):67–70PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Mussano F, Genova T, Verga Falzacappa E, Scopece P, Munaron L, Rivolo P, Mandracci P, Benedetti A, Carossa S, Patelli A (2017) In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces. Appl Surf Sci 409:314–324CrossRefGoogle Scholar
  29. 29.
    Mussano F, Genova T, Munaron L, Petrillo S, Erovigni F, Carossa S (2016) Cytokine, chemokine and growth factor profile of platelet-rich plasma. Platelets 27:467–471PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mussano F, Genova T, Corsalini M, Schierano G, Pettini F, Di Venere D, Carossa S (2017) Cytokine, chemokine, and growth factor profile characterization of undifferentiated and osteoinduced human adipose-derived stem cells. Stem Cells Int 25:1–11CrossRefGoogle Scholar
  31. 31.
    Herrera Sanchez MB, Previdi S, Bruno S et al (2017) Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency. Stem Cell Res Ther 8:176PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Petrillo S, Chiabrando D, Genova T, Fiorito V, Ingoglia G, Vinchi F, Mussano F, Carossa S, Silengo L, Altruda F, Merlo GR, Munaron L, Tolosano E (2018) Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death Differ 25:573–588PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mussano F, Genova T, Petrillo S et al (2018) Osteogenic differentiation modulates the cytokine, chemokine, and growth factor profile of ASCs and SHED. Int J Mol Sci 19:1454PubMedCentralCrossRefGoogle Scholar
  34. 34.
    Roato I, Belisario DC, Compagno M et al (2018) Adipose-derived stromal vascular fraction/xenohybrid bone scaffold: an alternative source for bone regeneration. Stem Cells Int 2018:1–11CrossRefGoogle Scholar
  35. 35.
    Miron RJ, Bosshardt DD (2016) OsteoMacs: Key players around bone biomaterials. Biomaterials 82:1–19PubMedCrossRefGoogle Scholar
  36. 36.
    Schierano G, Mussano F, Faga MG, Menicucci G, Manzella C, Sabione C, Genova T, Degerfeld MM, Peirone B, Cassenti A, Cassoni P, Carossa S (2015) An alumina toughened zirconia composite for dental implant application: in vivo animal results. Biomed Res Int 20:1–9CrossRefGoogle Scholar
  37. 37.
    Canullo L, Genova T, Mandracci P, Mussano F, Abundo R, Fiorellini J (2017) Morphometric changes induced by cold argon plasma treatment on osteoblasts grown on different dental implant surfaces. Int J Period Rest Dent 37:541–548Google Scholar
  38. 38.
    Genova T, Munaron L, Carossa S, Mussano F (2016) Overcoming physical constraints in bone engineering: the importance of being vascularized. J Biomater Appl 30:940–951PubMedCrossRefGoogle Scholar
  39. 39.
    Canullo L, Cassinelli C, Götz W, Tarnow D (2013) Plasma of argon accelerates murine fibroblast adhesion in early stages of titanium disk colonization. Int J Oral Maxillofac Implants 28:957–962PubMedCrossRefGoogle Scholar
  40. 40.
    Canullo L, Genova T, Tallarico M, Gautier G, Mussano F, Botticelli D (2016) Plasma of argon affects the earliest biological response of different implant surfaces: an in vitro comparative study. J Dent Res 95:566–573PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Seo CH, Furukawa K, Montagne K, Jeong H, Ushida T (2011) The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials 32:9568–9575PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ (2008) Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 29:1776–1784PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Großner-Schreiber B, Herzog M, Hedderich J, Duck A, Hannig M, Griepentrog M (2006) Focal adhesion contact formation by fibroblasts cultured on surface modified dental implants: an in vitro study. Clin Oral Implants Res 17:736–745PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Beutel BG, Danna NR, Gangolli R, Granato R, Manne L, Tovar N, Coelho PG (2014) Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma. Mater Sci Eng C Mater Biol Appl 45:484–490PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Iwasa F, Hori N, Ueno T, Minamikawa H, Yamada M, Ogawa T (2010) Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials 31:2717–2727PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hashimoto K, Irie H, Fujishima A (2005) TiO2 Photocatalysis: a historical overview and future prospects. Jap J Appl Physics 44(12):8269–8285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Private practiceRomeItaly
  2. 2.CIR Dental School, Department of Surgical SciencesUniversity of TurinTurinItaly
  3. 3.Department of PeriodontologyNantes UniversityNantesFrance
  4. 4.Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
  5. 5.Department of ScienceUniversity Roma TreRomeItaly
  6. 6.Laboratorio Interdipartimentale di Microscopia Elettronica (LIME)University Roma TreRomeItaly

Personalised recommendations