Advertisement

In vitro remineralization of enamel white spot lesions with a carrier-based amorphous calcium phosphate delivery system

  • Fang Hua
  • Jiarong Yan
  • Shikai Zhao
  • Hongye YangEmail author
  • Hong HeEmail author
Original Article
  • 3 Downloads

Abstract

Objectives

To achieve in vitro remineralization of enamel white spot lesions (WSLs) via a mesoporous delivery system of amorphous calcium phosphate (ACP) precursors.

Materials and methods

Amine-functionalized expanded pore mesoporous silica (aMSN) was loaded with polyacrylic acid–stabilized amorphous calcium phosphate (PAA-ACP) to develop a carrier-based delivery system (PAA-ACP@aMSN). Thirty-six artificial WSLs samples were created and randomly assigned to three treatments: artificial saliva solution (negative control, n = 12), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) slurry (n = 12), and PAA-ACP@aMSN slurry (n = 12). Surface microhardness, Raman intensity, and color were measured before/after artificial demineralization and after remineralization treatments to evaluate the remineralization level of each sample. SEM images were taken on the surface and cross-section of samples to observe microstructure changes.

Results

The surface microhardness recovery ratio (%SMHRR), Raman intensity change ratio (%ICR), and color recovery ratio (%CRR) were not significantly different between CPP-ACP and PAA-ACP@aMSN groups (P > 0.05), but both of them had significantly higher %SMHRR, %ICR, and %CRR values than negative control (P < 0.01). SEM images showed that apparent enamel prism imprints and inter-prism gaps in negative control were masked by mineral deposition in the PAA-ACP@aMSN and CPP-ACP groups.

Conclusions

PAA-ACP@aMSN has an ability to remineralize enamel WSLs.

Clinical relevance

The carrier-based amorphous calcium phosphate delivery system has great potential to serve as a remineralizing agent for the treatment of WSLs.

Keywords

Enamel Remineralization White spot lesions Amorphous calcium phosphate Mesoporous silica 

Notes

Funding information

This research was funded by the National Natural Science Foundation of China (No. 81701012) and China Postdoctoral Science Foundation (No. 2018 M640735).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. While the ethical research protocol was approved by the Ethics Committee for Human Studies of the School & Hospital of Stomatology, Wuhan University (No. 2017-49)

Informed consent

Informed consent was obtained from all individual participants included in the study.

Disclaimer

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Supplementary material

784_2019_3073_MOESM1_ESM.docx (98 kb)
ESM 1 (DOCX 98 kb)

References

  1. 1.
    Mitchell L (2007) An introduction to orthodontics, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Julien KC, Buschang PH, Campbell PM (2013) Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod 83(4):641–647PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Paula AB, Fernandes AR, Coelho AS, Marto CM, Ferreira MM, Caramelo F, do Vale F, Carrilho E (2017) Therapies for white spot lesions-a systematic review. J Evid Based Dent Pract 17(1):23–38PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Shungin D, Olsson AI, Persson M (2010) Orthodontic treatment-related white spot lesions: a 14-year prospective quantitative follow-up, including bonding material assessment. Am J Orthod Dentofac Orthop 138(2):136.e1-8; discussion 136-7–137CrossRefGoogle Scholar
  5. 5.
    Ren Y, Jongsma MA, Mei L, van der Mei HC, Busscher HJ (2014) Orthodontic treatment with fixed appliances and biofilm formation--a potential public health threat? Clin Oral Investig 18(7):1711–1718PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hua F, Yang H, He H (2018) Current enamel remineralization therapies have limited effects on postorthodontic white spot lesions. J Evid-Based Dent Pract 18(4):339–342PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Fernandez-Ferrer L, Vicente-Ruiz M, Garcia-Sanz V, Montiel-Company JM, Paredes-Gallardo V, Almerich-Silla JM, Bellot-Arcis C (2018) Enamel remineralization therapies for treating postorthodontic white-spot lesions: a systematic review. J Am Dent Assoc 149(9):778–786 e2PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Benson PE, Parkin N, Dyer F, Millett DT, Furness S, Germain P (2013) Fluorides for the prevention of early tooth decay (demineralised white lesions) during fixed brace treatment. Cochrane Database Syst Rev (12):CD003809Google Scholar
  9. 9.
    Hochli D, Hersberger-Zurfluh M, Papageorgiou SN, Eliades T (2017) Interventions for orthodontically induced white spot lesions: a systematic review and meta-analysis. Eur J Orthod 39(2):122–133PubMedPubMedCentralGoogle Scholar
  10. 10.
    Taha AA, Patel MP, Hill RG, Fleming PS (2017) The effect of bioactive glasses on enamel remineralization: a systematic review. J Dent 67:9–17PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Willmot D (2008) White spot lesions after orthodontic treatment. Semin Orthod 14(3):209–219CrossRefGoogle Scholar
  12. 12.
    Colfen H (2010) Biomineralization: a crystal-clear view. Nat Mater 9(12):960–961PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Thula TT, Rodriguez DE, Lee MH, Pendi L, Podschun J, Gower LB (2011) In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials. Acta Biomater 7(8):3158–3169PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci U S A 105(35):12748–12753PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Olszta MJ, Cheng X, Jee SS et al (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Reports 58(3–5):77–116CrossRefGoogle Scholar
  16. 16.
    Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ, Hilbers PA, de With G, Sommerdijk NA (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9(12):1004–1009PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nudelman F, Lausch AJ, Sommerdijk NA, Sone ED (2013) In vitro models of collagen biomineralization. J Struct Biol 183(2):258–269PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Luo XJ, Yang HY, Niu LN, Mao J, Huang C, Pashley DH, Tay FR (2016) Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica. Acta Biomater 31:378–387PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Vianna JS, Marquezan M, Lau TC, Sant’Anna EF (2016) Bonding brackets on white spot lesions pretreated by means of two methods. Dental Press J Orthod 21(2):39–44PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang J, Lynch RJM, Watson TF, Banerjee A (2018) Remineralisation of enamel white spot lesions pre-treated with chitosan in the presence of salivary pellicle. J Dent 72:21–28PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bakry AS, Abbassy MA (2018) Increasing the efficiency of CPP-ACP to remineralize enamel white spot lesions. J Dent 76:52–57PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Yang HY, Niu LN, Sun JL, Huang XQ, Pei DD, Huang C, Tay FR (2017) Biodegradable mesoporous delivery system for biomineralization precursors. Int J Nanomedicine 12:839–854PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lei J, Guo J, Fu D, Wang Y, Du X, Zhou L, Huang C (2014) Influence of three remineralization materials on physicochemical structure of demineralized enamel. J Wuhan Univ Technol-Mater Sci Ed 29:410–416CrossRefGoogle Scholar
  24. 24.
    Rehman I, Hench LL, Bonfield W, Smith R (1994) Analysis of surface layers on bioactive glasses. Biomaterials 15(10):865–870PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhang J, Boyes V, Festy F, Lynch RJM, Watson TF, Banerjee A (2018) In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan. Dent Mater 34(8):1154–1167PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Xu B, Chen X, Li R, Wang Y, Li Q (2014) Agreement of try-in pastes and the corresponding luting composites on the final color of ceramic veneers. J Prosthodont 23(4):308–312PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Farzanegan F, Ameri H, Miri Soleiman I, Khodaverdi E, Rangrazi A (2018) An in vitro study on the effect of amorphous calcium phosphate and fluoride solutions on color improvement of white spot lesions. Dent J (Basel) 6(3)PubMedCentralCrossRefGoogle Scholar
  28. 28.
    Billmeyer FJ, Berns RS, Saltzman M (2000) Billmeyer and Saltzman’s principles of color technology, ed 3 edn. Wiley, New York, pp 31–105Google Scholar
  29. 29.
    Lv X, Yang Y, Han S, Li D, Tu H, Li W, Zhou X, Zhang L (2015) Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries. Arch Oral Biol 60(10):1482–1487PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Miller MJ, Bernstein S, Colaiacovo SL, Nicolay O, Cisneros GJ (2016) Demineralized white spot lesions: an unmet challenge for orthodontists. Semin Orthod 22(3):193–204CrossRefGoogle Scholar
  31. 31.
    Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC (2010) New approaches to enhanced remineralization of tooth enamel. J Dent Res 89(11):1187–1197PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Zhou C, Zhang D, Bai Y, Li S (2014) Casein phosphopeptide-amorphous calcium phosphate remineralization of primary teeth early enamel lesions. J Dent 42(1):21–29PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Li J, Xie X, Wang Y, Yin W, Antoun JS, Farella M, Mei L (2014) Long-term remineralizing effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on early caries lesions in vivo: a systematic review. J Dent 42(7):769–777PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cross KJ, Huq NL, Palamara JE, Perich JW, Reynolds EC (2005) Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem 280(15):15362–15369PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Philip N (2018) State of the art enamel remineralization systems: the next frontier in caries management. Caries Res 53(3):284–295PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wang Z, Ouyang Y, Wu Z, Zhang L, Shao C, Fan J, Zhang L, Shi Y, Zhou Z, Pan H, Tang R, Fu B (2018) A novel fluorescent adhesive-assisted biomimetic mineralization. Nanoscale 10(40):18980–18987PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60(11):1266–1277PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Milly H, Festy F, Andiappan M, Watson TF, Thompson I, Banerjee A (2015) Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralization. Dent Mater 31(5):522–533PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Featherstone JD, ten Cate JM, Shariati M, Arends J (1983) Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res 17(5):385–391PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kielbassa AM, Wrbas KT, Schulte-Monting J, Hellwig E (1999) Correlation of transversal microradiography and microhardness on in situ-induced demineralization in irradiated and nonirradiated human dental enamel. Arch Oral Biol 44(3):243–251PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Tramini P, Pelissier B, Valcarcel J, Bonnet B, Maury L (2000) A Raman spectroscopic investigation of dentin and enamel structures modified by lactic acid. Caries Res 34(3):233–240PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mohanty B, Dadlani D, Mahoney D, Mann AB (2013) Characterizing and identifying incipient carious lesions in dental enamel using micro-Raman spectroscopy. Caries Res 47(1):27–33PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Santini A, Pulham CR, Rajab A, Ibbetson R (2008) The effect of a 10% carbamide peroxide bleaching agent on the phosphate concentration of tooth enamel assessed by Raman spectroscopy. Dental traumatology : official publication of International Association for Dental Traumatology 24(2):220–223CrossRefGoogle Scholar
  45. 45.
    Mohamed AM, Wong KH, Lee WJ, Marizan Nor M, Mohd Hussaini H, Rosli TI (2018) In vitro study of white spot lesion: maxilla and mandibular teeth. Saudi Dent J 30(2):142–150PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lu X, Leng Y (2005) Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26(10):1097–1108PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Yin Y, Yun S, Fang J, Chen H (2009) Chemical regeneration of human tooth enamel under near-physiological conditions. Chem Commun (Camb) (39):5892–5894Google Scholar
  48. 48.
    Guo X, Yu L, Chen L, Zhang H, Peng L, Guo X, Ding W (2014) Organoamine-assisted biomimetic synthesis of faceted hexagonal hydroxyapatite nanotubes with prominent stimulation activity for osteoblast proliferation. J Mater Chem B 2(13):1760–1763CrossRefGoogle Scholar
  49. 49.
    Cooper CL, Cosgrove T, van Duijneveldt JS, Murray M, Prescott SW (2013) Competition between polymers for adsorption on silica: a solvent relaxation NMR and small-angle neutron scattering study. Langmuir : the ACS journal of surfaces and colloids 29(41):12670–12678CrossRefGoogle Scholar
  50. 50.
    Olszta MJ, Douglas EP, Gower LB (2003) Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72(5):583–591PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ma Y, Zhang N, Weir MD, Bai Y, Xu HHK (2017) Novel multifunctional dental cement to prevent enamel demineralization near orthodontic brackets. J Dent 64:58–67PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhang N, Zhang K, Xie X, Dai Z, Zhao Z, Imazato S, Al-Dulaijan YA, Al-Qarni FD, Weir MD, Reynolds MA, Bai Y, Wang L, Xu HHK (2018) Nanostructured polymeric materials with protein-repellent and anti-caries properties for dental applications. Nanomaterials (Basel) 8(6):393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
  2. 2.Department of Orthodontics, School & Hospital of StomatologyWuhan UniversityWuhanChina
  3. 3.Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
  4. 4.Department of Prosthodontics, School & Hospital of StomatologyWuhan UniversityWuhanChina

Personalised recommendations