Advertisement

Apical root resorption after orthodontic treatment in patients with unilateral cleft lip and palate

  • Theodosia N. BartzelaEmail author
  • Maria R. Mang de la Rosa
  • Kristina Wolf
  • Anke Schmidt
  • Charlotte Opitz
Original Article
  • 20 Downloads

Abstract

Objectives

The aims of this retrospective longitudinal study were to present the incidence of external apical root resorption (EARR) in the maxillary anterior teeth of patients with complete unilateral cleft lip and palate (CUCLP) and to evaluate the influence of orthodontic treatment variables on the development of EARR.

Material and methods

Forty-one patients with CUCLP participated in the study. Orthopantomograms (OPGs), taken before (T2) treatment with multiband orthodontic appliances (MBA), and periapical radiographs (PAs) of the maxillary anterior teeth taken at the end (T3) of orthodontic treatment (OT) were assessed for EARR.

Results

The incidence of EARR at T3 (97.6%) was considerably higher than at T2 (51.2%). Central incisors and canines on the cleft side showed a significantly higher score (p < 0.01, p < 0.05 respectively) of EARR in comparison to the same group of teeth on the non-cleft side. Preexisting EARR and abnormal root morphology were identified as predisposing factors for EARR.

Conclusions

Patients with CUCLP treated with MBA have higher incidence of EARR on the maxillary anterior teeth of the cleft side. Severe EARR is rather rare but more often seen on central incisors of the cleft side.

Clinical relevance

As most of the patients with cleft lip and palate undergo a challenging and long-term OT with MBA, it is of importance to identify the predisposing factors related to the special anatomical features of the bone and teeth located in the cleft area, as well as the special OT needs of these patients.

Keywords

Cleft lip and palate Root resorption Anterior maxillary teeth Orthodontic treatment Risk factors 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Appropriate Institutional Review Boards and Subcommittee Reviews at Charité Universitätsmedizin Berlin approved the study (EA2/045/16).

Informed consent

For this type of study, formal consent is not required.

Supplementary material

784_2019_3044_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)

References

  1. 1.
    Lund H, Grondahl K, Hansen K, Grondahl HG (2012) Apical root resorption during orthodontic treatment. A prospective study using cone beam CT. Angle Orthod 82(3):480–487.  https://doi.org/10.2319/061311-390.1 Google Scholar
  2. 2.
    Mirabella AD, Artun J (1995) Risk factors for apical root resorption of maxillary anterior teeth in adult orthodontic patients. Am J Orthod Dentofac Orthop 108:48–55.  https://doi.org/10.1016/S0889-5406(95)70065-X Google Scholar
  3. 3.
    Kocadereli I, Yesil TN, Veske PS, Uysal S (2011) Apical root resorption: a prospective radiographic study of maxillary incisors. Eur J Dent 5(3):318–323Google Scholar
  4. 4.
    Jatania A, Shivalinga BF, Kiran J (2012) Root resorption after orthodontic treatment: a review. Int J Orthod Milwaukee 23(2):45–49Google Scholar
  5. 5.
    Motokawa M, Sasamoto T, Kaku M, Kawata T, Matsuda Y, Terao A, Tanne K (2012) Association between root resorption incident to orthodontic treatment and treatment factors. Eur J Orthod 34(3):350–356.  https://doi.org/10.1093/ejo/cjr018 Google Scholar
  6. 6.
    Poumpros E, Loberg E, Engstrom C (1994) Thyroid function and root resorption. Angle Orthod 64:389–393Google Scholar
  7. 7.
    Sharab LY, Morford LA, Dempsey J, Falcão-Alencar G, Mason A, Jacobson E, Kluemper GT, Macri JV, Hartsfield JK (2015) Genetic and treatment-related risk factors associated with external apical root resorption (EARR) concurrent with orthodontia. Orthod Craniofacial Res 18(S1):71–82.  https://doi.org/10.1111/ocr.12078 Google Scholar
  8. 8.
    Roscoe M, Meira J, Cattaneo P (2015) Association of orthodontic force system and root resorption: a systematic review. Am J Orthod Dentofac Orthop 147(5):610–626.  https://doi.org/10.1016/j.ajodo.2014.12.026 Google Scholar
  9. 9.
    Remington D, Joondeph DR, Artun J, Riedel R, Chapko M (1989) Long-term evaluation of root resorption occuring during orthodontic treatment. Am J Orthod Dentofac Orthop 96:43–46.  https://doi.org/10.1016/0889-5406(89)90227-8 Google Scholar
  10. 10.
    Harris EF, Kineret SE, Tolley EA (1997) A heritable component for external apical root resorption in patients treated orthodontically. Am J Orthod Dentofac Orthop 111:301–309.  https://doi.org/10.1016/S0889-5406(97)70189-6 Google Scholar
  11. 11.
    Sameshima GT, Sinclair PM (2001) Predicting and preventing root resorption: part 1. Diagnostic factors. Am J Orthod Dentofac Orthop 119:505–510.  https://doi.org/10.1067/mod.2001.113409 Google Scholar
  12. 12.
    Jiang RP, McDonald JP, Fu M (2010) Root resorption before and after orthodontic treatment: a clinical study of contributory factors. Eur J Orthod 32(6):693–697.  https://doi.org/10.1093/ejo/cjp165 Google Scholar
  13. 13.
    Phillips JR (1955) Apical root resorption under orthodontic therapy. Angle Orthod 25(1):1–22Google Scholar
  14. 14.
    Pandis N, Nasika M, Polychronopoulou A, Eliades T (2008) External apical root resorption in patients treated with conventional and self-ligating brackets. Am J Orthod Dentofac Orthop 134(5):646–651.  https://doi.org/10.1016/j.ajodo.2007.01.032 Google Scholar
  15. 15.
    Brezniak N, Wasserstein A (1993) Root resorption after orthodontic treatment: part 2. Literature review. Am J Orthod Dentofac Orthop 103:138–146.  https://doi.org/10.1016/S0889-5406(05)81763-9 Google Scholar
  16. 16.
    Dougherty HL (1968) The effect of mechanical forces upon the mandibular buccal segments during orthodontic treatment. Am J Orthod 54(2):83–103Google Scholar
  17. 17.
    Newman WG (1975) Possible etiologic factors in external root resorption. Am J Orthod 67(5):522–539Google Scholar
  18. 18.
    Kinsella P (1971) Some aspects of root resorption in orthodontics. N Z Orthod J:21-25Google Scholar
  19. 19.
    Kjær I (1995) Morphological characteristics of dentitions developing excessive root resorption during orthodontic treatment. Eur J Orthod 17(1):25–34.  https://doi.org/10.1093/ejo/17.1.25 Google Scholar
  20. 20.
    Verna C, Dalstra M, Melsen B (2003) Bone turnover rate in rats does not influence root resorption induced by orthodontic treatment. Eur J Orthod 25(4):359–363.  https://doi.org/10.1093/ejo/25.4.359 Google Scholar
  21. 21.
    Vázquez-Landaverde LA, Rojas-Huidobro R, Alonso Gallegos-Corona M, Aceves C (2002) Periodontal 5′-deiodination on forced-induced root resorption-the protective effect of thyroid hormone administration. Eur J Orthod 24(4):363–369.  https://doi.org/10.1093/ejo/24.4.363 Google Scholar
  22. 22.
    Becks H (1939) Orthodontic prognosis: evaluation of routine dentomedical examinations to determine “good and poor risks”. Am J Orthod Oral Surg 25(7):610–624.  https://doi.org/10.1016/S0096-6347(39)90061-X Google Scholar
  23. 23.
    Becks H, Cowden RC (1942) Root resorptions and their relation to pathologic bone formation: part II. Classification, degrees, prognosis and frequency. Am J Orthod Oral Surg 28(8):513–526.  https://doi.org/10.1016/S0096-6347(42)90327-2
  24. 24.
    Sirisoontorn I, Hotokezaka H, Hashimoto M, Gonzales C, Luppanapornlarp S, Darendeliler M, Yoshida N (2012) Orthodontic tooth movement and root resorption in ovariectomized rats treated by systemic administration of zoledronic acid. Am J Orthod Dentofac Orthop 141(5):563–573.  https://doi.org/10.1016/j.ajodo.2011.11.016 Google Scholar
  25. 25.
    Goldie RS, King GJ (1984) Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod 85(5):424–430.  https://doi.org/10.1016/0002-9416(84)90163-5 Google Scholar
  26. 26.
    Brudvik P, Rygh P (1991) Root resorption after local injection of prostaglandin E2 during experimental tooth movement. Eur J Orthod 13:255–263.  https://doi.org/10.1093/ejo/13.4.255 Google Scholar
  27. 27.
    Seifi M, Eslami B, Saffar AS (2003) The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 25(2):199–204.  https://doi.org/10.1093/ejo/25.2.199 Google Scholar
  28. 28.
    Gonzales C, Hotokezaka H, Karadeniz E, Miyazaki T, Kobayashi E, Darendeliler MA, Yoshida N (2011) Effects of fluoride intake on orthodontic tooth movement and orthodontically induced root resorption. Am J Orthod Dentofac Orthop 2(139):196–205.  https://doi.org/10.1016/j.ajodo.2009.05.029 Google Scholar
  29. 29.
    Haugland L, Kristensen KD, Lie SA, Vandevska-Radunovic V (2018) The effect of biologic factors and adjunctive therapies on orthodontically induced inflammatory root resorption: a systematic review and meta-analysis. Eur J Orthod 29. doi:  https://doi.org/10.1093/ejo/cjy003
  30. 30.
    Tehranchi A, Sadighnia A, Younessian F, Abdi AH, Shirvani A (2017) Correlation of vitamin D status and orthodontic-induced external apical root resorption. Dent Res J (Isfahan) 14(6):403–411Google Scholar
  31. 31.
    Spoerri A, Koletsi D, Eliades T (2018) Intrinsic hormone-like molecules and external root resorption during orthodontic tooth movement. A systematic review and meta-analysis in preclinical in-vivo research. Front Physiol 9:303.  https://doi.org/10.3389/fphys.2018.00303 Google Scholar
  32. 32.
    Massler M, Malone AJ (1954) Root resorption in human permanent teeth. Am J Orthod 40:619–633Google Scholar
  33. 33.
    Al-Qawasmi RA, Hartsfield JK, Everett ET, Flury L, Liu L, Foroud TM, Macri JV, Roberts WE (2003) Genetic predisposition to external apical root resorption. Am J Orthod Dentofac Orthop 123(3):242–252.  https://doi.org/10.1067/mod.2003.42 Google Scholar
  34. 34.
    Nanekrungsan K, Patanaporn V, Janhom A, Korwanich N (2012) External apical root resorption in maxillary incisors in orthodontic patients: associated factors and radiographic evaluation. Imaging Sci Dent 42(3):147–154.  https://doi.org/10.5624/isd.2012.42.3.147 Google Scholar
  35. 35.
    Brezniak N, Wasserstein A (1993) Root resorption after orthodontic treatment: part 1. Literature review. Am J Orthod Dentofac Orthop 103(1):62–66.  https://doi.org/10.1016/0889-5406(93)70106-X Google Scholar
  36. 36.
    Cardinal L, da Rosa ZG, Mendes FM, Andrade I, Oliveira DD, Dominguez GC (2018) The impact of rapid maxillary expansion on maxillary first molar root morphology of cleft subjects. Clin Oral Investig 22(1):369–376.  https://doi.org/10.1007/s00784-017-2121-3 Google Scholar
  37. 37.
    Mavragani M, Vergari A, Selliseth NJ, Bøe OE, Wisth PL (2000) A radiographic comparison of apical root resorption after orthodontic treatment with a standard edgewise and a straight-wire edgewise technique. Eur J Orthod 22(6):665–674.  https://doi.org/10.1093/ejo/22.6.665 Google Scholar
  38. 38.
    Malmgren O, Goldson L, Hill C, Orwin A, Petrini L, Lundberg M (1982) Root resorption after orthodontic treatment of traumatized teeth. Am J Orthod 82(6):487–491.  https://doi.org/10.1016/0002-9416(82)90317-7 Google Scholar
  39. 39.
    Smale I, Artun J, Behbehani F, Doppel D, van't Hof M, Kuijpers-Jagtman AM (2005) Apical root resorption 6 months after initiation of fixed orthodontic appliance therapy. Am J Orthod Dentofac Orthop 128(1):57–67.  https://doi.org/10.1016/j.ajodo.2003.12.030 Google Scholar
  40. 40.
    Spurrier SW, Hall SH, Joondeph DN, Shapiro PA, Riedel RA (1990) A comparison of apical root resorption during orthodontic treatment in endodontically treated and vital teeth. Am J Orthod Dentofac Orthop 97:1304.  https://doi.org/10.1016/0889-5406(90)70086-R Google Scholar
  41. 41.
    Mirabella AD, Artun J (1995) Prevalence and severity of apical root resorption of maxillary anterior teeth in adult orthodontic patients. Eur J Orthod 17(2):93–99Google Scholar
  42. 42.
    Rosenberg HN (1972) An evaluation of the incidence and amount of apical root resorption and dilaceration occuring in orthodontically treated teeth, having incompletely formed roots at the beginning of Begg treatment. Am J Orthod 61:524–525Google Scholar
  43. 43.
    Iglesias-Linares A, Sonnenberg B, Solano B, Yañez-Vico R-M, Solano E, Lindauer SJ, Flores-Mir C (2017) Orthodontically induced external apical root resorption in patients treated with fixed appliances vs removable aligners. Angle Orthod 87(1):3–10.  https://doi.org/10.2319/02016-101.1 Google Scholar
  44. 44.
    Aras I, Unal I, Huniler G, Aras A (2018) Root resorption due to orthodontic treatment using self-ligating and conventional brackets. J Orofac Orthop 79(3):181–190.  https://doi.org/10.1007/s00056-018-0133-5 Google Scholar
  45. 45.
    Jacobs C, Gebhardt PF, Jacobs V, Hechtner M, Meila D, Wehrbein H (2014) Root resorption, treatment time and extraction rate during orthodontic treatment with self-ligating and conventional brackets. Head Face Med 10(1):2.  https://doi.org/10.1186/1746-160x-10-2 Google Scholar
  46. 46.
    Leite V, Conti AC, Navarro R, Almeida M, Oltramari-Navarro P, Almeida R (2012) Comparison of root resorption between self-ligating and conventional preadjusted brackets using cone beam computed tomography. Angle Orthod 82(6):1078–1082.  https://doi.org/10.2319/080911-501.1 Google Scholar
  47. 47.
    Alzahawi K, Færøvig E, Brudvik P, Bøe OE, Mavragani M (2014) Root resorption after leveling with super-elastic and conventional steel arch wires: a prospective study. Prog Orthod 15(1):35.  https://doi.org/10.1186/s40510-014-0035-z Google Scholar
  48. 48.
    Simplicio H, da Silva JS, Caldas SG, dos Santos-Pinto A (2012) External apical root resorption in retracted incisors. Orthodontics (Chic) 13(1):86–93Google Scholar
  49. 49.
    Fox N (2005) Longer orthodontic treatment may result in greater external apical root resorption. Evid Based Dent 6(1):21.  https://doi.org/10.1038/sj.ebd.6400304 Google Scholar
  50. 50.
    Weltman B, Vig KWL, Fields HW, Shanker S, Kaizar EE (2010) Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofac Orthop 137(4):462–476.  https://doi.org/10.1016/j.ajodo.2009.06.021 Google Scholar
  51. 51.
    Levander E, Malmgren O (1988) Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors. Eur J Orthod 10(1):30–38.  https://doi.org/10.1093/ejo/10.1.30 Google Scholar
  52. 52.
    Pereira S, Lavado N, Nogueira L, Lopez M, Abreu J, Silva H (2014) Polymorphisms of genes encoding P2X7R, IL-1B, OPG and RANK in orthodontic-induced apical root resorption. Oral Dis 20(7):659–667.  https://doi.org/10.1111/odi.12185 Google Scholar
  53. 53.
    Lopatiene K, Dumbravaite A (2008) Risk factors of root resorption after orthodontic treatment. Stomatologija 10(3):89–95Google Scholar
  54. 54.
    Maués CPR, do Nascimento RR, Vilella OV (2015) Severe root resorption resulting from orthodontic treatment: prevalence and risk factors. Dental Press J Orthod 20(1):52–58.  https://doi.org/10.1590/2176-9451.20.1.052-058.oar Google Scholar
  55. 55.
    Odenrick L, Brattström V (1985) Nailbiting: frequency and association with root resorption during orthodontic treatment. Br J Orthod 12(2):78–81Google Scholar
  56. 56.
    Dewinter G, Quirynen M, Heidbuchel K, Verdonck A, Willems G, Carels C (2003) Dental abnormalities, bone graft quality, and periodontal conditions in patients with unilateral cleft lip and palate at different phases of orthodontic treatment. Cleft Palate Craniofac J 40(4):343–350.  https://doi.org/10.1597/1545-1569_2003_040_0343_dabgqa_2.0.co_2 Google Scholar
  57. 57.
    Mao L-X, Shen G-F, Fang B, Xia Y-H, Ma X-H, Wang B (2013) Bone grafting, corticotomy, and orthodontics: treatment of cleft alveolus in a Chinese cohort. Cleft Palate Craniofac J 50(6):662–670.  https://doi.org/10.1597/12-034r Google Scholar
  58. 58.
    Lee KS, Straja SR, Tuncay OC (2003) Perceived long-term prognosis of teeth with orthodontically resorbed roots. Orthod Craniofacial Res 6(3):177–191.  https://doi.org/10.1034/j.1600-0544.2003.02276.x Google Scholar
  59. 59.
    Bergland O, Semb G, Abyholm F, Borchgrevink H, Eskeland G (1986) Secondary bone grafting and orthodontic treatment in patients with bilateral complete clefts of the lip and palate. Ann Plast Surg 17(6):460–474Google Scholar
  60. 60.
    Maeda-Iino A, Furukawa M, Kwon S, Marutani K, Nakagawa S, Fuchigami T, Nakamura N, Miyawaki S (2017) Evaluation of maxillary central incisors on the noncleft and cleft sides in patients with unilateral cleft lip and palate—part 2: relationship between root resorption, horizontal tooth movement, and quantity of grafted autogenous bone. Angle Orthod 87(6):863–870.  https://doi.org/10.2319/031317-189.1 Google Scholar
  61. 61.
    Dahlberg G (1940). In: Statistical methods for medical and biological students. George Allen and Unwin Ltd., LondonGoogle Scholar
  62. 62.
    Barros SE, Janson G, Chiqueto K, Baldo VO, Baldo TO (2017) Root resorption of maxillary incisors retracted with and without skeletal anchorage. Am J Orthod Dentofac Orthop 151(2):397–406.  https://doi.org/10.1016/j.ajodo.2016.06.048 Google Scholar
  63. 63.
    Brice GL, Sampson WJ, Sims MR (1991) An ultrastructural evaluation of the relationship between epithelial rests of Malassez and orthodontic root resorption and repair in man. Aust Orthod J 12(2):90–94Google Scholar
  64. 64.
    Årtun J, Van’t Hullenaar R, Doppel D, Kuijpers-Jagtman AM (2009) Identification of orthodontic patients at risk of severe apical root resorption. Am J Orthod Dentofac Orthop 135(4):448–455.  https://doi.org/10.1016/j.ajodo.2007.06.012 Google Scholar
  65. 65.
    Chan E, Darendeliler MA (2006) Physical properties of root cementum: part 7. Extent of root resorption under areas of compression and tension. Am J Orthod Dentofac Orthop 129(4):504–510.  https://doi.org/10.1016/j.ajodo.2004.12.018 Google Scholar
  66. 66.
    Alamadi E, Alhazmi H, Hansen K, Lundgren T, Naoumova J (2017) A comparative study of cone beam computed tomography and conventional radiography in diagnosing the extent of root resorptions. Prog Orthod 18(1):37.  https://doi.org/10.1186/s40510-017-0191-z Google Scholar
  67. 67.
    Malek S, Darendeliler MA, Swain MV (2001) Physical properties of root cementum: part I. A new method for 3-dimensional evaluation. Am J Orthod Dentofac Orthop 120(2):198–208.  https://doi.org/10.1067/mod.2001.114535 Google Scholar
  68. 68.
    Han G, Huang S, Hoff JWV, Zeng X, Kuijpers-Jagtman AM (2005) Root resorption after orthodontic intrusion and extrusion. Angle Orthod 75(6):912–918.  https://doi.org/10.1043/0003-3219(2005)75[912:RRAOIA]2.0.CO;2 Google Scholar
  69. 69.
    Dudic A, Giannopoulou C, Leuzinger M, Kiliaridis S (2009) Detection of apical root resorption after orthodontic treatment by using panoramic radiography and cone-beam computed tomography of super-high resolution. Am J Orthod Dentofac Orthop 135(4):434–437.  https://doi.org/10.1016/j.ajodo.2008.10.014 Google Scholar
  70. 70.
    Makedonas D, Lund H, Hansen K (2013) Root resorption diagnosed with cone beam computed tomography after 6 months and at the end of orthodontic treatment with fixed appliances. Angle Orthod 83(3):389–393.  https://doi.org/10.2319/042012-332.1 Google Scholar
  71. 71.
    Grünheid T, Kolbeck Schieck JR, Pliska BT, Ahmad M, Larson BE (2012) Dosimetry of a cone-beam computed tomography machine compared with a digital x-ray machine in orthodontic imaging. Am J Orthod Dentofac Orthop 141(4):436–443.  https://doi.org/10.1016/j.ajodo.2011.10.024 Google Scholar
  72. 72.
    Pandis N, Walsh T, Polychronopoulou A, Katsaros C, Eliades T (2013) Split-mouth designs in orthodontics: an overview with applications to orthodontic clinical trials. Eur J Orthod 35(6):783–789.  https://doi.org/10.1093/ejo/cjs108 Google Scholar
  73. 73.
    Hall HD, Posnick JC (1983) Early results of secondary bone grafts in 106 alveolar clefts. J Oral Maxillofac Surg 41(5):289–294.  https://doi.org/10.1016/0278-2391(83)90295-1 Google Scholar
  74. 74.
    da Silva Filho OG, Teles SG, Ozawa TO, Filho LC (2000) Secondary bone graft and eruption of the permanent canine in patients with alveolar clefts: literature review and case report. Angle Orthod 70(2):174–178Google Scholar
  75. 75.
    Nakamoto N, Nagasaka H, Daimaruya T, Takahashi I, Sugawara J, Mitani H (2002) Experimental tooth movement through mature and immature bone regenerates after distraction osteogenesis in dogs. Am J Orthod Dentofac Orthop 121(4):385–395.  https://doi.org/10.1067/mod.2002.122368 Google Scholar
  76. 76.
    Bartzela TN, Carels CEL, Bronkhorst EM, Jagtman AMK (2013) Tooth agenesis patterns in unilateral cleft lip and palate in humans. Arch Oral Biol 58(6):596–602.  https://doi.org/10.1016/j.archoralbio.2012.12.007 Google Scholar
  77. 77.
    Boehn A (1963) Dental anomalies in harelip and cleft palate. Acta Odontol Scand 21(SUPPL38):1–109Google Scholar
  78. 78.
    Hansen K, Mehdinia M (2002) Isolated soft tissue cleft lip: the influence on the nasal cavity and supernumerary laterals. Cleft Palate Craniofac J 39(3):322–326.  https://doi.org/10.1597/1545-1569_2002_039_0322_istclt_2.0.co_2 Google Scholar
  79. 79.
    Owman-Moll P (1995) Orthodontic tooth movement and root resorption with special reference to force magnitude and duration. A clinical and histological investigation in adolescents. Swed Dent J Suppl 105:1–45Google Scholar
  80. 80.
    DeShields RW (1969) A study of root resorption in treated class II, division I malocclusions. Angle Orthod 39(4):231–245Google Scholar
  81. 81.
    Nieto-Nieto N, Solano JE, Yañez-Vico R (2017) External apical root resorption concurrent with orthodontic forces: the genetic influence. Acta Odontol Scand 75(4):280–287.  https://doi.org/10.1080/00016357.2017.1294260 Google Scholar
  82. 82.
    Kook Y-A, Park S, Sameshima GT (2003) Peg-shaped and small lateral incisors not at higher risk for root resorption. Am J Orthod Dentofac Orthop 123(3):253–258.  https://doi.org/10.1067/mod.2003.81 Google Scholar
  83. 83.
    Semb G, Ramstad T (1999) The influence of alveolar bone grafting on the orthodontic and prosthodontic treatment of patients with cleft lip and palate. Dent Update 26(2):60–64.  https://doi.org/10.12968/denu.1999.26.2.60 Google Scholar
  84. 84.
    Tortora C, Meazzini MC, Garattini G, Brusati R (2008) Prevalence of abnormalities in dental structure, position, and eruption pattern in a population of unilateral and bilateral cleft lip and palate patients. Cleft Palate Craniofac J 45(2):154–162.  https://doi.org/10.1597/06-218.1
  85. 85.
    Kaley J, Phillips C (1991) Factors related to root resorption in edgewise practice. Angle Orthod 61(2):125–132Google Scholar
  86. 86.
    Baumrind S, Korn EL, Boyd RL (1996) Apical root resorption in orthodontically treated adults. Am J Orthod Dentofac Orthop 110(3):311–320.  https://doi.org/10.1016/S0889-5406(96)80016-3 Google Scholar
  87. 87.
    Hollender L, Rönnerman A, Thilander B (1980) Root resorption, marginal bone support and clinical crown length in orthodontically treated patients. Eur J Orthod 2(4):197–205.  https://doi.org/10.1093/ejo/2.4.197-a Google Scholar
  88. 88.
    Guo Y, He S, Gu T, Liu Y, Chen S (2016) Genetic and clinical risk factors of root resorption associated with orthodontic treatment. Am J Orthod Dentofac Orthop 150(2):283–289.  https://doi.org/10.1016/j.ajodo.2015.12.028 Google Scholar
  89. 89.
    Årtun J, Smale I, Behbehani F, Doppel D, Hof MV, Kuijpers-Jagtman AM (2005) Apical root resorption six and 12 months after initiation of fixed orthodontic appliance therapy. Angle Orthod 75(6):919–926.  https://doi.org/10.1043/0003-3219(2005)75[919:Arrsam]2.0.Co;2 Google Scholar
  90. 90.
    Mohandesan H, Ravanmehr H, Valaei N (2007) A radiographic analysis of external apical root resorption of maxillary incisors during active orthodontic treatment. Eur J Orthod 29(2):134–139.  https://doi.org/10.1093/ejo/cjl090 Google Scholar
  91. 91.
    Freitas JA, Garib DG, Oliveira M, Lauris Rde C, Almeida AL, Neves LT, Trindade-Suedam IK, Yaedu RY, Soares S, Pinto JH (2012) Rehabilitative treatment of cleft lip and palate: experience of the Hospital for Rehabilitation of Craniofacial Anomalies-USP (HRAC-USP)—part 2: J Appl Oral Sci 20(2):268–281Google Scholar
  92. 92.
    Patel N, Currier GF, Kadioglu O, Kierl JP, Skaggs VJ (2012) A CBCT comparison of anterior root resorption in SureSmile and conventional edgewise treatments. Orthodontics (Chic) 13(1):100–109Google Scholar
  93. 93.
    Janson GRP, de Luca CG, Martins DR, Henriques JFC, de Freitas MR (2000) A radiographic comparison of apical root resorption after orthodontic treatment with 3 different fixed appliance techniques. Am J Orthod Dentofac Orthop 118(3):262–273.  https://doi.org/10.1067/mod.2000.99136 Google Scholar
  94. 94.
    Linge L, Linge BO (1991) Patient characteristics and treatment variables associated with apical root resorption during orthodontic treatment. Am J Orthod Dentofac Orthop 99(1):35–43.  https://doi.org/10.1016/S0889-5406(05)81678-6 Google Scholar
  95. 95.
    Jung Y-H, Cho B-H (2011) External root resorption after orthodontic treatment: a study of contributing factors. Imaging Sci Dent 41(1):17–21.  https://doi.org/10.5624/isd.2011.41.1.17 Google Scholar
  96. 96.
    Nishioka M, Ioi H, Nakata S, Nakasima A, Counts A (2006) Root resorption and immune system factors in the Japanese. Angle Orthod 76(1):103–108Google Scholar
  97. 97.
    Iglesias-Linares A, Morford LA, Hartsfield JK (2016) Bone density and dental external apical root resorption. Curr Osteoporos Rep 14(6):292–309.  https://doi.org/10.1007/s11914-016-0340-1 Google Scholar
  98. 98.
    Gonzales C, Hotokezaka H, Matsuo K-I, Shibazaki T, Yozgatian JH, Darendeliler MA, Yoshida N (2009) Effects of steroidal and nonsteroidal drugs on tooth movement and root resorption in the rat molar. Angle Orthod 79(4):715–726.  https://doi.org/10.2319/072108-381.1 Google Scholar
  99. 99.
    Liu L, Igarashi K, Haruyama N, Saeki S, Shinoda H, Mitani H (2004) Effects of local administration of clodronate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 26(5):469–473Google Scholar
  100. 100.
    Silva LB, Guimaraes CS, Santos RA (2008) Immunology of root resorption: a literature review. Indian J Dent Res 19(4):340–343Google Scholar
  101. 101.
    van der Veen FJ, van Hagen JM, Berkhof J, Don Griot JP (2006) Regional underreporting of associated congenital anomalies in cleft patients in the Netherlands. Cleft Palate Craniofac J 43(6):710–714.  https://doi.org/10.1597/05-179 Google Scholar
  102. 102.
    Ramos SP, Ortolan GO, Dos Santos LM, Tobouti PL, Hidalgo MM, Consolaro A, Itano EN (2011) Anti-dentine antibodies with root resorption during orthodontic treatment. Eur J Orthod 33(5):584–591.  https://doi.org/10.1093/ejo/cjq145 Google Scholar
  103. 103.
    Bartzela T, Türp JC, Motschall E, Maltha JC (2009) Medication effects on the rate of orthodontic tooth movement: a systematic literature review. Am J Orthod Dentofac Orthop 135(1):16–26.  https://doi.org/10.1016/j.ajodo.2008.08.016 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Charité - Universitätsmedizin Berlin, CC03 Department of Orthodontics, Dentofacial Orthopedics and PedodonticsBerlinGermany
  2. 2.Wolf K Private practiceHamburgGermany
  3. 3.Schmidt Anke Private practiceBerlinGermany

Personalised recommendations