Advertisement

Photo-activated implants: a triple-blinded, split-mouth, randomized controlled clinical trial on the resistance to removal torque at various healing intervals

  • Algirdas Puisys
  • Markus Schlee
  • Tomas Linkevicius
  • Pantelis Petrakakis
  • Antje Tjaden
Original Article
  • 5 Downloads

Abstract

Objectives

Hydrophilic implant surfaces promote faster osseointegration of dental implants with a higher bone-implant contact (BIC) rate. Animal and in vitro studies proved that ultraviolet (UV) irradiation of titanium implants regains hydrophilicity. Clinical impact is still unclear. The objective of this RCT was to assess the removal torque (RT) required to unfix a surface-treated implant (test group) versus the original surface implant (control group) performed at various points in time. The null hypothesis stated that test and control implants will show the same deliberation force at specific time points.

Material and methods

One hundred eighty partially edentulous patients were randomly assigned to six groups. In single-stage surgery, each patient received one test and one control implant. In total, 180 test and 180 control implants were placed epicrestally. Test implants received a surface treatment with UV irradiation prior to insertion, in order to reduce carbon and enhance hydrophilicity and thus wettability. Maximum RT values for test and control implants were recorded with a torque measuring device at implant placement (T1), after 1 (group 1), 2 (group 2), 3 (group 3), 4 (group 4), 6 (group 5) (T2), and 8 weeks (group 6) of healing. Subsequently, implants were returned to their original position for the continuation of the healing process.

Results

No implant was lost. Age, gender, smoking, implant position, and bone quality could be excluded as confounding factors because of the lack of statistical significance. At T2, RT values were higher for test implants compared with those for control implants, being statistically significant in groups 2, 3, 4, and 6 (p < 0.05).

Conclusions

Our data support rejection of the null hypothesis.

Clinical relevance

Photo-activation of the surface of titanium implants leads to higher resistance to RT forces compared with that of non-treated implants, indicating improved healing and implant stability especially in the early healing phase.

Keywords

Removal torque Photo-activated implants healing intervals Hydrophilicity Bone to implant contact rate 

Notes

Acknowledgments

The authors thank Dipl. Math. Ulrike von Hehn for her statistical support.

Funding

The study was supported by a grant from Ushio. The implants were provided by BioHorizons. W+H provided the calibrated drilling device.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T (2009) The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 30(6):1015–1025CrossRefGoogle Scholar
  2. 2.
    Albrektsson T, Branemark PI, Hansson HA et al (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52(2):155–170CrossRefGoogle Scholar
  3. 3.
    Albrektsson T (2008) Hard tissue implant interface. Aust Dent J 53(Suppl 1):S34–S38CrossRefGoogle Scholar
  4. 4.
    Albrektsson T, Buser D, Chen ST, Cochran D, DeBruyn H, Jemt T, Koka S, Nevins M, Sennerby L, Simion M, Taylor TD, Wennerberg A (2012) Statements from the Estepona consensus meeting on peri-implantitis, February 2-4, 2012. Clin Implant Dent Relat Res 14(6):781–782CrossRefGoogle Scholar
  5. 5.
    Albrektsson T, Dahlin C, Jemt T, Sennerby L, Turri A, Wennerberg A (2014) Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clin Implant Dent Relat Res 16(2):155–165CrossRefGoogle Scholar
  6. 6.
    Albrektsson T, Canullo L, Cochran D, de Bruyn H (2016) “Peri-implantitis”: a complication of a foreign body or a man-made “disease”. Facts and fiction. Clin Implant Dent Relat Res 18(4):840–849CrossRefGoogle Scholar
  7. 7.
    Atsumi M, Park S-H, Wang H-L (2007) Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants 22(5):743–754Google Scholar
  8. 8.
    Att W, Hori N, Takeuchi M, Ouyang J, Yang Y, Anpo M, Ogawa T (2009) Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 30(29):5352–5363CrossRefGoogle Scholar
  9. 9.
    Branemark PI, Zarb GA, Albrektsson T (1985) Tissue-integrated prostheses: osseointegration in clinical. Quintessence, Chicago [u. a]Google Scholar
  10. 10.
    Buser D, Nydegger T, Hirt HP, Cochran DL, Nolte LP (1998) Removal torque values of titanium implants in the maxilla of miniature pigs. Int J Oral Maxillofac Implants 13(5):611–619Google Scholar
  11. 11.
    Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Snétivy D, Nolte LP (1999) Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 45(2):75–83CrossRefGoogle Scholar
  12. 12.
    Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83(7):529–533CrossRefGoogle Scholar
  13. 13.
    Chowdhary R, Chowdhary N, Mishra SK (2011) Re-osseointegration of loosened implant in a splinted fixed prosthesis. Niger J Clin Pract 14(1):102–105CrossRefGoogle Scholar
  14. 14.
    Donath K, Laass M, Gunzl HJ (1992) The histopathology of different foreign-body reactions in oral soft tissue and bone tissue. Virchows Arch A Pathol Anat Histopathol 420(2):131–137CrossRefGoogle Scholar
  15. 15.
    Esposito M, Ardebili Y, Worthington H (2014) Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev 22(7):CD003815.  https://doi.org/10.1002/14651858.CD003815.pub4 Google Scholar
  16. 16.
    Faeda RS, Tavares HS, Sartori R, Guastaldi AC, Marcantonio E Jr (2009) Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. J Oral Maxillofac Surg 67(8):1706–1715CrossRefGoogle Scholar
  17. 17.
    Ferguson SJ, Broggini N, Wieland M et al (2006) Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mater Res A 78(2):291–297CrossRefGoogle Scholar
  18. 18.
    Franchi M, Fini M, Martini D, Orsini E, Leonardi L, Ruggeri A, Giavaresi G, Ottani V (2005) Biological fixation of endosseous implants. Micron 36(7–8):665–671CrossRefGoogle Scholar
  19. 19.
    Funato A, Yamada M, Ogawa T (2013) Success rate, healing time, and implant stability of photofunctionalized dental implants. Int J Oral Maxillofac Implants 28(5):1261–1271CrossRefGoogle Scholar
  20. 20.
    Gottlow J, Dard M, Kjellson F, Obrecht M, Sennerby L (2012) Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res 14(4):538–545CrossRefGoogle Scholar
  21. 21.
    He F, Yang G, Wang X et al (2009) Effect of electrochemically deposited nanohydroxyapatite on bone bonding of sandblasted/dual acid-etched titanium implant. Int J Oral Maxillofac Implants 24(5):790–799Google Scholar
  22. 22.
    Hyzy SL, Cheng A, Cohen DJ, Yatzkaier G, Whitehead AJ, Clohessy RM, Gittens RA, Boyan BD, Schwartz Z (2016) Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti-6Al-4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model. J Biomed Mater Res A 104(8):2086–2098CrossRefGoogle Scholar
  23. 23.
    Ivanoff CJ, Sennerby L, Lekholm U (1997) Reintegration of mobilized titanium implants. An experimental study in rabbit tibia. Int J Oral Maxillofac Surg 26(4):310–315CrossRefGoogle Scholar
  24. 24.
    Jividen G Jr, Misch CE (2000) Reverse torque testing and early loading failures: help or hindrance? J Oral Implantol 26(2):82–90CrossRefGoogle Scholar
  25. 25.
    Krafft T, Graef F, Karl M (2015) Osstell resonance frequency measurement values as a prognostic factor in implant dentistry. J Oral Implantol 41(4):e133–e137CrossRefGoogle Scholar
  26. 26.
    Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD (2011) Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 22(4):349–356CrossRefGoogle Scholar
  27. 27.
    Lee J-T, Cho S-A (2016) Biomechanical evaluation of laser-etched Ti implant surfaces vs. chemically modified SLA Ti implant surfaces: removal torque and resonance frequency analysis in rabbit tibias. J Mech Behav Biomed Mater 61:299–307CrossRefGoogle Scholar
  28. 28.
    Lucente J, Galante J, Trisi P, Kenealy JN (2006) Reintegration success of osseotite implants after intentional countertorque liberation in the endentulous human mandible. Implant Dent 15(2):178–185CrossRefGoogle Scholar
  29. 29.
    Manresa C, Bosch M, Echeverria JJ (2014) The comparison between implant stability quotient and bone-implant contact revisited: an experiment in Beagle dog. Clin Oral Implants Res 25(11):1213–1221CrossRefGoogle Scholar
  30. 30.
    Meredith N (1998) Assessment of implant stability as a prognostic determinant. Int J Prosthodont 11(5):491–501Google Scholar
  31. 31.
    Ogawa T (2014) Ultraviolet photofunctionalization of titanium implants. Int J Oral Maxillofac Implants 29(1): e95–102Google Scholar
  32. 32.
    Raghavendra S, Wood MC, Taylor TD (2005) Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 20(3):425–431Google Scholar
  33. 33.
    Sartoretto S C, Alves A T N N, Zarranz L et al (2016) Hydrophilic surface of Ti6Al4V-ELI alloy improves the early bone apposition of sheep tibia. Clin Oral Implants ResGoogle Scholar
  34. 34.
    Schlee M, van der Schoor WP, van der Schoor ARM (2015) Immediate loading of trabecular metal-enhanced titanium dental implants: interim results from an international proof-of-principle study. Clin Implant Dent Relat Res 17(Suppl 1):e308–e320CrossRefGoogle Scholar
  35. 35.
    Schwartz Z, Boyan BD (1994) Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem 56(3):340–347CrossRefGoogle Scholar
  36. 36.
    Schwarz F, Wieland M, Schwartz Z et al (2009) Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B Appl Biomater 88(2):544–557CrossRefGoogle Scholar
  37. 37.
    Simeone SG, Rios M, Simonpietri J (2016) Reverse torque of 30 Ncm applied to dental implants as test for osseointegration-a human observational study. Int J Implant Dent 2(1):26CrossRefGoogle Scholar
  38. 38.
    Smeets R, Stadlinger B, Schwarz F et al (2016) Impact of dental implant surface modifications on osseointegration. Biomed Res Int 2016:6285620CrossRefGoogle Scholar
  39. 39.
    Sullivan DY, Sherwood RL, Collins TA et al (1996) The reverse-torque test: a clinical report. Int J Oral Maxillofac Implants 11(2):179–185Google Scholar
  40. 40.
    Suzuki T, Hori N, Att W, Kubo K, Iwasa F, Ueno T, Maeda H, Ogawa T (2009) Ultraviolet treatment overcomes time-related degrading bioactivity of titanium. Tissue Eng A 15(12):3679–3688CrossRefGoogle Scholar
  41. 41.
    Tjellstrom A, Jacobsson M, Albrektsson T (1988) Removal torque of osseointegrated craniofacial implants: a clinical study. Int J Oral Maxillofac Implants 3(4):287–289Google Scholar
  42. 42.
    Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15(1):60–67CrossRefGoogle Scholar
  43. 43.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.VilniusLithuania
  2. 2.ForchheimGermany
  3. 3.DuesseldorfGermany
  4. 4.ForchheimGermany

Personalised recommendations