Advertisement

Sinus augmentation analysis of the gradient of graft consolidation: a split-mouth histomorphometric study

  • Roni KolermanEmail author
  • Joseph Nissan
  • Marina Rahmanov
  • José Luis Calvo-Guirado
  • Nirit Tager Green
  • Haim Tal
Original Article
  • 32 Downloads

Abstract

Objective

The aim of this study was to histomorphometrically test the hypothesis that graft consolidation originates from the sinus floor.

Materials and methods

This prospective, randomized split-mouth study investigated patients undergoing bilateral maxillary lateral sinus floor augmentation using either freeze-dried bone allografts (FDBAs) or biphasic calcium phosphate (BCP) bone substitute. Apico-coronal core biopsies were harvested during implant placement 9 months after sinus floor augmentation, processed for histological observation, and measured histomorphometrically.

Results

Biopsies were taken from 26 bilateral sites in 13 patients. The density of new bone (NB) decreased with increasing distance from the sinus floor. The percentage mean surface of NB ranged from 31 ± 9.5% at 2 mm from the sinus floor (G1) to 27.7 ± 11.2% at 4 mm (G2) for the FDBA specimens and from 30.0 ± 11.0% at G1 to 23.5 ± 9.9% at G2 for the BCP specimens. Evaluation of the residual graft particle (GP) area alone as a function of distance from the floor revealed a clear inverse gradient of 7.1 ± 6.6 to 9.1 ± 10.3 between G1 and G2 for the FDBA allografts, with the same tendency for the BCP alloplasts (21.9 ± 9.9 to 27.7 ± 6.6, respectively).

Conclusion

Our results support the concept that osteogenesis initiates in regions proximal to the bony walls of the maxillary sinus and may be enhanced by them.

Clinical relevance

The nature of the grafting material had a greater influence on the degree of NB formation in regions distant from the native walls where there is reduced inherent osteogenic potential.

Keywords

Biomaterials Sinus floor elevation Bone substitute Native bone Gradient 

Notes

Acknowledgments

The authors wish to thank Prof. Marilena Vered, head of the Department of Oral Pathology at Tel-Aviv University for her help, Ms. Esther Eshkol for editorial assistance, and Ilana Gerlatner from the Department of Biostatistics, Tel-Aviv University.

Author’s contribution

Roni Kolerman—Sinus floor elevation, implant placement, data collection, analysis, and interpretation, manuscript writing and revision.

Joseph Nissan—Study concept/design, data analysis.

Marina Rahmanov—Histomorphometric measurements.

José Luis Calvo-Guirado—Critical revision of the manuscript.

Nirit Tager Green—Study concept/design, critical revision of the manuscript.

Tal Haim—Study concept/design, critical revision of the manuscript.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding information

This study was partially supported by the Gerald A. Niznick Chair of Implantology at Tel-Aviv University.

Compliance with ethical standards

Ethics

All participants signed a consent form after being fully informed about the nature of the procedure. The ethics committee of Tel-Aviv University approved the study protocol.

Conflicts of interest

I, Roni Kolerman, hereby declare that I have no conflicts of interest.

I, Joseph Nissan, hereby declare that I have no conflicts of interest.

I, Marina Rahmanov, hereby declare that I have no conflicts of interest.

I, Calvo Guirado Luis, hereby declare that I have no conflicts of interest.

I, Nirit Tagger Green, hereby declare that I have no conflicts of interest.

I, Haim Tal, hereby declare that I have no conflicts of interest.

Ethical approval

All procedures performed in this study are in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17:175–185CrossRefGoogle Scholar
  2. 2.
    Busenlechner D, Huber CD, Vasak C, Dobsak A, Gruber R, Watzek G (2009) Sinus augmentation analysis revised: the gradient of graft consolidation. Clin Oral Implants Res 20:1078–1083CrossRefGoogle Scholar
  3. 3.
    Fuerst G, Tangl S, Gruber R, Gahleitner A, Sanroman F, Watzek G (2004) Bone formation following sinus grafting with autogenous bone-derived cells and bovine bone mineral in minipigs: preliminary findings. Clin Oral Implants Res 15:733–740CrossRefGoogle Scholar
  4. 4.
    Roldan JC, Jepsen S, Schmidt C, Knuppel H, Rueger DC, Acil Y, Terheyden H (2004) Sinus floor augmentation with simultaneous placement of dental implants in the presence of platelet-rich plasma or recombinant human bone morphogenetic protein-7. Clin Oral Implants Res 15:716–772CrossRefGoogle Scholar
  5. 5.
    Alayan J, Vaquette C, Saifzadeh S, Hutmacher DW, Ivanovski S (2016) A histomorphometric assessment of collagen stabilized anorganic bovine bone mineral in maxillary sinus augmentation – a randomized controlled trial in sheep. Clin Oral Implants Res 27:734–743CrossRefGoogle Scholar
  6. 6.
    Price AM, Nunn M, Oppenheim FG, Van Dyke TE (2011) De novo bone formation after the sinus lift procedure. J Periodontol 82:1245–1255CrossRefGoogle Scholar
  7. 7.
    Alayan J, Vaquette C, Farah C, Ivanovski S (2016) A histomorphometric assessment of collagen-stabilized anorganic bovine bone mineral in maxillary sinus augmentation – a prospective clinical trial. Clin Oral Implants Res 27:850–858CrossRefGoogle Scholar
  8. 8.
    Jensen OT, Shulman LB, Block MS, Iacono VJ (1998) Report of the sinus consensus conference of 1996. Int J Oral Maxillofac Implants 13:11–45PubMedGoogle Scholar
  9. 9.
    Fenner M, Vairaktaris E, Fischer K, Schlegel KA, Neukam FW, Nkenke E (2009) Influence of residual alveolar bone height on osseointegration of implants in the maxilla: a pilot study. Clin Oral Implants Res 20:555–559CrossRefGoogle Scholar
  10. 10.
    Schenk RK, Buser D, Hardwick WR, Dahlin C (1994) Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants 9:13–29PubMedGoogle Scholar
  11. 11.
    Mellonig JT (1995) Donor selection, testing, and inactivation of the HIV virus in freeze-dried bone allografts. Pract Periodontics Aesthet Dent 7:13–22PubMedGoogle Scholar
  12. 12.
    Kolerman R, Goshen G, Joseph N, Kozlovsky A, Shetty S, Tal H (2012) Histomorphometric analysis of maxillary sinus augmentation using an alloplast bone substitute. J Oral Maxillofac Surg 70:1835–1843CrossRefGoogle Scholar
  13. 13.
    Kolerman R, Nissan J, Rahmanov M, Vered H, Cohen O, Tal H (2017) Comparison between mineralized cancellous bone allograft and an alloplast material for sinus augmentation: a split mouth histomorphometric study. Clin Implant Dent Relat Res 19:812–820CrossRefGoogle Scholar
  14. 14.
    Corbella S, Taschieri S, Weinstein R, del Fabbro M (2016) Histomorphometric outcomes after lateral sinus floor elevation procedure: a systematic review of the literature and meta-analysis. Clin Oral Implants Res 27:1106–1122CrossRefGoogle Scholar
  15. 15.
    Kolerman R, Samorodnitzky-Naveh GR, Barnea E, Tal H (2012) Histomorphometric analysis of newly formed bone after bilateral maxillary sinus augmentation using two different osteoconductive materials and internal collagen membrane. Int J Periodontics Restorative Dent 32:e21–e28PubMedGoogle Scholar
  16. 16.
    Lundgren S, Andersson S, Gualini F, Sennerby L (2004) Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation. Clin Implant Dent Relat Res 6:165–173CrossRefGoogle Scholar
  17. 17.
    Ham AW, Harris WR (1971) Repair and transplantation of bone. In: Bourne GH (ed) The biochemistry and physiology of bone. Academic Press, New York, pp 337–399Google Scholar
  18. 18.
    Schenk R (1987) Cytodynamics and histodynamics of primary bone repair. In: Lane JM (ed) Fracture healing. Churchill Livingstone, New York, pp 23–32Google Scholar
  19. 19.
    Haas R, Donath K, Fodinger M, Watzek G (1998) Bovine hydroxyapatite for maxillary sinus grafting: comparative histomorphometric findings in sheep. Clin Oral Implants Res 9:107–116CrossRefGoogle Scholar
  20. 20.
    Haas R, Haidvogl D, Dortbudak O, Mailath G (2002) Freeze-dried bone for maxillary sinus augmentation in sheep. Part ii: biomechanical findings. Clin Oral Implants Res 13:581–586CrossRefGoogle Scholar
  21. 21.
    Burchardt H (1983) The biology of bone graft repair. Clin Orthop Relat Res 174:28–42Google Scholar
  22. 22.
    Scala A, Botticelli D, Rangel IG, Jr de Oliveira JA, Okamoto R, Lang NP (2010) Early healing after elevation of the maxillary sinus floor applying a lateral access: a histological study in monkeys. Clin Oral Implants Res 21:1320–1326CrossRefGoogle Scholar
  23. 23.
    Xu H, Shimizu Y, Asai S, Ooya K (2003) Experimental sinus grafting with the use of deproteinized bone particles of different sizes. Clin Oral Implants Res 14:548–555CrossRefGoogle Scholar
  24. 24.
    Xu H, Shimizu Y, Asai S, Ooya K (2004) Grafting of deproteinized bone particles inhibits bone resorption after maxillary sinus floor elevation. Clin Oral Implants Res 15:126–133CrossRefGoogle Scholar
  25. 25.
    Scala A, Botticelli D, Faeda RS, Garcia Rangel I Jr, Americo de Oliveira J, Lang NP (2012) Lack of influence of the schneiderian membrane in forming new bone apical to implants simultaneously installed with sinus floor elevation: an experimental study in monkeys. Clin Oral Implants Res 23:175–181CrossRefGoogle Scholar
  26. 26.
    Margolin MD, Cogan AG, Taylor M, Buck D, McAllister TN, Toth C, McAllister BS (1998) Maxillary sinus augmentation in the nonhuman primate: a comparative radiographic and histologic study between recombinant human osteogenic protein-1 and natural bone mineral. J Periodontol 69:911–919CrossRefGoogle Scholar
  27. 27.
    Boyne PJ, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly LC, Alder M, Nummikoski P (1997) A feasibility study evaluating rhbmp-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent 17:11–25PubMedGoogle Scholar
  28. 28.
    Gruber R, Kandler B, Fuerst G, Fischer MB, Watzek G (2004) Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (bmp)-6 and bmp-7 with increased osteogenic differentiation in vitro. Clin Oral Implants Res 15:575–580CrossRefGoogle Scholar
  29. 29.
    Srouji S, Kizhner T, Ben David D, Riminucci M, Bianco P, Livne E (2009) The schneiderian membrane contains osteoprogenitor cells:in vivo and in vitro study. Calcif Tissue Int 84:138–145CrossRefGoogle Scholar
  30. 30.
    Palma VC, Magro-Filho O, de Oliveria JA, Lundgren S, Salata LA, Sennerby L (2006) Bone reformation and implant integration following maxillary sinus membrane elevation: an experimental study in primates. Clin Implant Dent Relat Res 8:11–24CrossRefGoogle Scholar
  31. 31.
    Wallace SS, Froum SJ (2003) Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol 8:328–343CrossRefGoogle Scholar
  32. 32.
    Tarnow DP, Wallace SS, Froum SJ, Rohrer MD, Cho SC (2000) Histologic and clinical comparison of bilateral sinus floor elevations with and without barrier membrane placement in 12 patients: part 3 of an ongoing prospective study. Int J Periodontics Restorative Dent 20:117–125PubMedGoogle Scholar
  33. 33.
    Tawil G, Mawla M (2001) Sinus floor elevation using a bovine bone mineral (bio-Oss) with or without the concomitant use of a bilayered collagen barrier (bio-Gide): a clinical report of immediate and delayed implant placement. Int J Oral Maxillofac Implants 16:713–721PubMedGoogle Scholar
  34. 34.
    Fugazzotto PA, Vlassis JA (2003) Simplified classification and repair system for sinus membrane perforations. J Periodontol 74:1534–1541CrossRefGoogle Scholar
  35. 35.
    Rothamel D, Schwarz F, Fienitz T, Smeets R, Dreiseidler T, Ritter L, Happe A, Zöller J (2012) Biocompatibility and biodegradation of a native porcine pericardium membrane: results of in vitro and in vivo examinations. Int J Oral Maxillofac Implants 27:146–154PubMedGoogle Scholar
  36. 36.
    Avera SP, Stampley WA, McAllister BS (1997) Histologic and clinical observations of resorbable and nonresorbable barrier membranes used in maxillary sinus graft containment. Int J Oral Maxillofac Implants 12:88–94PubMedGoogle Scholar
  37. 37.
    Zijderveld SA, van den Bergh JP, Schulten EA, ten Bruggenkate CM (2008) Anatomical and surgical findings and complications in 100 consecutive maxillary sinus floor elevation procedures. J Oral Maxillofac Surg 66:1426–1438CrossRefGoogle Scholar
  38. 38.
    Sakkas A, Konstantinidis I, Winter K, Schramm A, Wilde F (2016) Effect of schneiderian membrane perforation on sinus lift graft outcome using two different donor sites: a retrospective study of 105 maxillary sinus elevation procedures. GMS Interdiscip Plast Reconstr Surg DGPW 5:Doc11PubMedPubMedCentralGoogle Scholar
  39. 39.
    Karabuda C, Arisan V, Ozyuvaci H (2006) Effects of sinus membrane perforations on the success of dental implants placed in the augmented sinus. J Periodontol 77:1991–1997CrossRefGoogle Scholar
  40. 40.
    Mandelaris GA, Scheyer ET, Evans M, Kim D, McAllister B, Nevins ML, Rios HF, Sarment D (2017) American Academy of periodontology best evidence consensus statement on selected Oral applications for cone-beam computed tomography. J Periodontol 88:939–945CrossRefGoogle Scholar
  41. 41.
    Yabuuchi H, Kamitani T, Sagiyama K, Yamasaki Y, Matsuura Y, Hino T, Tsutsui S, Kondo M, Shirasaka T, Honda H (2018) Clinical application of radiation dose reduction for head and neck CT. Eur J Radiol 107:209–215CrossRefGoogle Scholar
  42. 42.
    Seung-Jun S, Hung Wung B, Jae-Hong L, Yong-Gun K (2015) Bone dynamics in the upward direction after a maxillary sinus floor elevation procedure: serial segmentation using synchrotron radiation micro-computed tomography. Int J Nanomedicine 10(Special Issue on diverse applications in Nano-Theranostics):129–136Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Periodontology, the Maurice and Gabriela Goldschleger School of Dental Medicine, The Sackler Faculty of MedicineTel-Aviv UniversityTel-AvivIsrael
  2. 2.Department of Oral Rehabilitation, the Maurice and Gabriela Goldschleger School of Dental Medicine, the Sackler Faculty of MedicineTel-Aviv UniversityTel-AvivIsrael
  3. 3.Department of General and Implant Dentistry, Faculty of Medicine and DentistryUniversity of MurciaMurciaSpain

Personalised recommendations