Prevalence of WNT10A gene mutations in non-syndromic oligodontia

  • G. Ruiz-Heiland
  • S. Lenz
  • N. BockEmail author
  • S. Ruf
Original Article



Non-syndromic oligodontia is an infrequent clinical condition whose etiology is not yet completely understood being a wide spectrum of gene mutations described in concomitance with this severe form of tooth agenesis. Recently, multiple observations have linked up to 50% of cases with isolated hypodontia to mutations in the WNT10A gene. Here, we hypothesized that mutations in the WNT10A gene could also be present in families affected by non-syndromic oligodontia.

Material and methods

All available patients with non-syndromic oligodontia (n = 20) treated at the Department of Orthodontics, University of Giessen, Germany between 1986 and 2013 as well as their family members were analyzed for mutations in the WNT10A gene.


Mutation screening was positive in 50% of the 20 patients. The analysis revealed that the mutations 2:219755011(c.682T>TA)(p.F228I), 2:219754822(c.493G>GA)(p.G165R), 2:219754816(c.487C>CT)(p.R163W), and 2:219747090(c.321C>CA)(p.C107*), the novel missense mutation 2:219757676(c.937G/GT)(p.G313C), and the novel synonym variant 2:219754854(c.525C>CT)(p.H175H) were present.


Multiple phenotypes are found in individuals presenting mutations in the WNT10A gene. Among them, the stop codon p.C107* as well as the biallelic p.F228I variants correlate with the most severe oligodontia phenotypes. In addition, we diagnosed the monoallelic mutations p.F228I, p.G165R, and p.G313C in healthy relatives with normal dentitions.

Clinical relevance

A correct diagnosis of non-syndromic oligodontia is fundamental to discard a possible underlying pathology in which multiple tooth agenesis could be the most evidential clinical sign. Due to the wide spectrum of pathologies that are associated to mutations in the WNT10A gene, an extended genetic analysis of these individuals’ relatives is also essential.


Non-syndromic oligodontia WNT10A Gene Mutation Pedigree Analysis 



We sincerely thank the patients and their family members for their participation in the study; the German Orthodontic Society (DGKFO) for funding our research; Prof. D. Nolte, Department of Human Genetics, Justus-Liebig University, Giessen; and Dr. C. Grünig, Microsynth AG, Balgach, Switzerland, for the helpful discussions during the analysis of results.


The work was supported by the German Orthodontic Society (DGKFO).

Compliance with ethical standards

Conflict of interest

Author A declares that she has no conflict of interest. Author B declares that she has no conflict of interest. Author C declares that he has no conflict of interest. Author D declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Medical Faculty, University of Giessen, Germany, file number 122/12) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants or, in case of minors, from their parents.

Supplementary material

784_2018_2731_MOESM1_ESM.pdf (391 kb)
ESM 1 (PDF 391 kb)


  1. 1.
    Rolling S, Poulsen S (2011) Oligodontia in Danish schoolchildren. Acta Odontol Scand 59:111–112CrossRefGoogle Scholar
  2. 2.
    Ruf S, Klimas D, Honemann M, Jabir S (2013) Genetic background of nonsyndromic oligodontia: a systematic review and meta-analysis. J Orofac Orthop 74:295–308. CrossRefPubMedGoogle Scholar
  3. 3.
    Visinoni AF, de Souza RL, Freire-Maia N, Gollop TR, Chautard-Freire-Maia EA (2003) X-linked hypohidrotic ectodermal dysplasia mutations in Brazilian families. Am J Med Genet A 122A:51–55. CrossRefPubMedGoogle Scholar
  4. 4.
    Clauss F, Maniere MC, Obry F, Waltmann E, Hadj-Rabia S, Bodemer C, Alembik Y, Lesot H, Schmittbuhl M (2008) Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review. J Dent Res 87:1089–1099CrossRefGoogle Scholar
  5. 5.
    Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R (2002) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev 16:3173–3185. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ockeloen CW, Khandelwal KD, Dreesen K, Ludwig KU, Sullivan R, van Rooij IA, Thonissen M, Swinnen S, Phan M, Conte F, Ishorst N, Gilissen C, Roa Fuentes L, van de Vorst M, Henkes A, Steehouwer M, van Beusekom E, Bloemen M, Vankeirsbilck B, Berge S, Hens G, Schoenaers J, Van der Poorten V, Roosenboom J, Verdonck A, Devriendt K, Roeleveldt N, Jhangiani SN, Vissers LE, Lupski JR, de Ligt J, Von den Hoff JW, Pfundt R, Brunner HG, Zhou H, Dixon J, Mangold E, van Bokhoven H, Dixon MJ, Kleefstra T, Hoischen A, Carels CE (2016) Novel mutations in LRP6 highlight the role of WNT signaling in tooth agenesis. Genetics in Medicine 18:1158–1162. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, Taketo MM, Morrisey EE, Atit R, Dlugosz AA, Millar SE (2008) Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 313:210–224. CrossRefPubMedGoogle Scholar
  8. 8.
    Bae CH, Kim TH, Ko SO, Lee JC, Yang X, Cho ES (2015) Wntless regulates dentin apposition and root elongation in the mandibular molar. J Dent Res 94:439–445. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu Y, Han D, Wang L, Feng H (2013) Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells. Biochem Biophys Res Commun 434:717–721. CrossRefPubMedGoogle Scholar
  10. 10.
    Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano- Yamamoto T, Thesleff I (2007) Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation 75:452–462. CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Z, Guo Q, Tian H, Lv P, Zhou C, Gao X (2014) Effects of WNT10A on proliferation and differentiation of human dental pulp cells. J Endod 40:1593–1599. CrossRefPubMedGoogle Scholar
  12. 12.
    Bohring A, Stamm T, Spaich C, Haase C, Spree K, Hehr U, Hoffmann M, Ledig S, Sel S, Wieacker P, Ropke A (2009) WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am J Hum Genet 85:97–105. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hsu TC, Lee JY, Hsu MM, Chao SC (2018) Case report of Schöpf-Schulz-Passarge syndrome resulting from a missense mutation, p.Arg104Cys, in WNT10A. J Dermatol 45:475–478. CrossRefPubMedGoogle Scholar
  14. 14.
    Mues G, Bonds J, Xiang L, Vieira AR, Seymen F, Klein O, D'Souza RN (2014) The WNT10A gene in ectodermal dysplasias and selective tooth agenesis. Am J Med Genet A 164A:2455–2460. CrossRefPubMedGoogle Scholar
  15. 15.
    Nawaz S, Klar J, Wajid M, Aslam M, Tariq M, Schuster J, Baig SM, Dahl N (2009) WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome. Eur J Hum Genet 17:1600–1605. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nagy N, Wedgeworth E, Hamada T, White JM, Hashimoto T, McGrath JA (2010) Schopf-Schulz-Passarge syndrome resulting from a homozygous nonsense mutation in WNT10A. J Dermatol Sci 58:220–222. CrossRefPubMedGoogle Scholar
  17. 17.
    Pauly KJ, Balakirski G, Megahed M, Rübben A, Schmitt L (2018) Schöpf-Schulz-Passarge syndrome associated with two new missense mutations des WNT10A. Journal of the German Society of Dermatology 16:66–69. CrossRefPubMedGoogle Scholar
  18. 18.
    Van Geel M, Gattas M, Kesler Y, Tong P, Yan H, Tran K, Steijlen PM, Murrell DF, Van Steensel MA (2010) Phenotypic variability associated with WNT10A nonsense mutations. British Journal of Dermatology 162:1403–1406. CrossRefPubMedGoogle Scholar
  19. 19.
    Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, Bal E, Chassaing N, Vincent MC, Viot G, Clauss F, Maniere MC, Toupenay S, Le Merrer M, Lyonnet S, Cormier-Daire V, Amiel J, Faivre L, de Prost Y, Munnich A, Bonnefont JP, Bodemer C, Smahi A (2011) Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat 32:70–72. CrossRefPubMedGoogle Scholar
  20. 20.
    Zeng B, Xiao X, Li S, Lu H, Lu J, Zhu L, Yu D, Zhao W (2016) Eight mutations of three genes (EDA, EDAR, and WNT10A) identified in seven hypohidrotic ectodermal dysplasia patients. Genes 7:E65. CrossRefPubMedGoogle Scholar
  21. 21.
    van den Boogaard MJ, Creton M, Bronkhorst Y, van der Hout A, Hennekam E, Lindhout D, Cune M, Ploos van Amstel HK (2012) Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Genet 49:327–331. CrossRefPubMedGoogle Scholar
  22. 22.
    Song S, Zhao R, He H, Zhang J, Feng H, Lin L (2014) WNT10A variants are associated with non-syndromic tooth agenesis in the general population. Hum Genet 133:117–124. CrossRefPubMedGoogle Scholar
  23. 23.
    Machida J, Goto H, Tatematsu T, Shibata A, Miyachi H, Takahashi K, Izumi H, Nakayama A, Shimozato K, Tokita Y (2017) WNT10A variants isolated from Japanese patients with congenital tooth agenesis. Human Genome Variation 4:17047. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Abdalla EM, Mostowska A, Jagodziński PP, Dwidar K, Ismail SR (2014) A novel WNT10A mutation causes non-syndromic hypodontia in an Egyptian family. Arch Oral Biol 59:722–728. CrossRefPubMedGoogle Scholar
  25. 25.
    Vink CP, Ockeloen CW, ten Kate S, Koolen DA, Ploos van Amstel JK, Kuijpers-Jagtman AM, van Heumen CC, Kleefstra T, Carels CE (2014) Variability in dentofacial phenotypes in four families with WNT10A mutations. Eur J Hum Genet 22:1063–1070. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yuan Q, Zhao M, Tandon B, Maili L, Liu X, Zhang A, Baugh EH, Tran T, Silva RM, Hecht JT, Swindell EC, Wagner DS, Letra A (2017) Role of WNT10A in failure of tooth development in humans and zebrafish. Molecular Genetics & Genomic Medicine 5:730–741. CrossRefGoogle Scholar
  27. 27.
    van Wijk AJ, Tan SP (2006) A numeric code for identifying patterns of human tooth agenesis: a new approach. Eur J Oral Sci 114:97–101. CrossRefPubMedGoogle Scholar
  28. 28.
    Bock NC, Lenz S, Ruiz-Heiland G, Ruf S (2017) Nonsyndromic oligodontia: does the Tooth Agenesis Code (TAC) enable prediction of the causative mutation? J Orofac Orthop 78:112–120. CrossRefPubMedGoogle Scholar
  29. 29.
    Arzoo PS, Klar J, Bergendal B, Norderyd J, Dahl N (2014) WNT10A mutations account for (1/4) of population-based isolated oligodontia and show phenotypic correlations. Am J Med Genet A 164A:353–359. CrossRefPubMedGoogle Scholar
  30. 30.
    Nieminen P (2009) Genetic basis of tooth agenesis. J Exp Zool B Mol Dev Evol 312B:320–342. CrossRefPubMedGoogle Scholar
  31. 31.
    Mostowska A, Biedziak B, Zadurska M, Matuszewska-Trojan S, Jagodzinski PP (2015) WNT10A coding variants and maxillary lateral incisor agenesis with associated dental anomalies. Eur J Oral Sci 123:1–8. CrossRefPubMedGoogle Scholar
  32. 32.
    Yang J, Wang SK, Choi M, Reid BM, Hu Y, Lee YL, Herzog CR, Kim-Berman H, Lee M, Benke PJ, Lloyd KC, Simmer JP, Hu JC (2015) Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Molecular Genetics & Genomic Medicine 3:40–58. CrossRefGoogle Scholar
  33. 33.
    Bergendal B, Norderyd J, Zhou X, Klar J, Dahl N (2016) Abnormal primary and permanent dentitions with ectodermal symptoms predict WNT10A deficiency. BMC Medical Genetics 17:88CrossRefGoogle Scholar
  34. 34.
    Kantaputra P, Sripathomsawat W (2011) WNT10A and isolated hypodontia. Am J Med Genet A 155A:1119–1122. CrossRefPubMedGoogle Scholar
  35. 35.
    Dinckan N, Du R, Petty LE, Coban-Akdemir Z, Jhangiani SN, Paine I, Baugh EH, Erdem AP, Kayserili H, Doddapaneni H, Hu J, Muzny DM, Boerwinkle E, Gibbs RA, Lupski JR, Uyguner ZO, Below JE, Letra A (2018) Whole-exome sequencing identifies novel variants for tooth agenesis. Journal of Dent Research 97:49–59. CrossRefGoogle Scholar
  36. 36.
    Haddaji Mastouri M, De Coster P, Zaghabani A, Jammali F, Raouahi N, Ben Salem A, Saad A, Coucke P, H’Mida Ben Brahim D (2018) Genetic study of non-syndromic tooth agenesis through the screening of paired box 9, msh homeobox 1, axin 2, and Wnt family member 10A genes: a case-series. European Journal of Oral Sciences 126:24–32. CrossRefPubMedGoogle Scholar
  37. 37.
    Tardieu C, Jung S, Niederreither K, Prasad M, Hadj-Rabia S, Philip N, Mallet A, Consolino E, Sfeir E, Noueiri B, Chassaing N, Dollfus H, Manière MC, Bloch-Zupan A, Clauss F (2017) Dental and extra-oral clinical features in 41 patients with WNT10A gene mutations: a multicentric genotype-phenotype study. Clin Genet 92:477–486. CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang SJ, Wu ZZ (2016) WNT10A polymorphism may be a risk factor for non-syndromic hypodontia. Genetics and Molecular Research 15:gmr 15016033. CrossRefGoogle Scholar
  39. 39.
    Salvi A, Giacopuzzi E, Bardellini E, Amadori F, Ferrari L, De Petro G, Borsani G, Majorana A (2016) Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis. Int J Mol Med 38:1338–1348. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Plaisancie J, Bailleul-Forestier I, Gaston V, Vaysse F, Lacombe D, Holder- Espinasse M, Abramowicz M, Coubes C, Plessis G, Faivre L, Demeer B, Vincent- Delorme C, Dollfus H, Sigaudy S, Guillen-Navarro E, Verloes A, Jonveaux P, Martin- Coignard D, Colin E, Bieth E, Calvas P, Chassaing N (2013) Mutations in WNT10A are frequently involved in oligodontia associated with minor signs of ectodermal dysplasia. Am J Med Genet A 161A:671–678. CrossRefPubMedGoogle Scholar
  41. 41.
    Castori M, Castiglia D, Brancati F, Foglio M, Heath S, Floriddia G, Madonna S, Fischer J, Zambruno G (2011) Two families confirm Schopf-Schulz-Passarge syndrome as a discrete entity within the WNT10A phenotypic spectrum. Clin Genet 79:92–95. CrossRefPubMedGoogle Scholar
  42. 42.
    Kroigard AB, Clemmensen O, Gjorup H, Hertz JM, Bygum A (2016) Odonto-onycho-dermal dysplasia in a patient homozygous for a WNT10A nonsense mutation and mild manifestations of ectodermal dysplasia in carriers of the mutation. BMC Dermatol 16:3. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tziotzios C, Petrof G, Liu L, Verma A, Wedgeworth EK, Mellerio JE, McGrath JA (2014) Clinical features and WNT10A mutations in seven unrelated cases of Schopf-Schulz-Passarge syndrome. Br J Dermatol 171:1211–1214. CrossRefPubMedGoogle Scholar
  44. 44.
    Abid MF, Simpson MA, Barbosa IA, Seppala M, Irving M, Sharpe PT, Cobourne MT (2018) WNT10A mutation results in severe tooth agenesis in a family of three sisters. Orthod Craniofacial Res 21(Jun 21):153–159. CrossRefGoogle Scholar
  45. 45.
    Dhamo B, Fennis W, Creton M, Vucic S, Cune M, Ploos van Amstel HK, Wolvius EB, van den Boogaard MJ, Ongkosuwito EM (2016) The association between WNT10A variants and dental development in patients with isolated oligodontia. Eur J Hum Genet 25:59–65. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang J, Sun K, Shen Y, Xu Y, Xie J, Huang R, Zhang Y, Xu C, Zhang X, Wang R, Lin Y (2016) DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia. Sci Rep 6:19162. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fan Y, Zhou Y, Zhou X, Xu X, Pi C, Xu R, Zheng L (2015) Epigenetic control of gene function in enamel development. Current Stem Cell Research & Therapy 10:405–411CrossRefGoogle Scholar
  48. 48.
    Zheng LW, Zhang BP, Xu RS, Xu X, Ye L, Zhou XD (2014) Bivalent histone modifications during tooth development. International Journal of Oral Science 6:205–211. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OrthodonticsJustus-Liebig University, GiessenGiessenGermany
  2. 2.LübeckGermany

Personalised recommendations