Cell sheets of human dental pulp stem cells for future application in bone replacement

  • Ana Clara Fagundes Pedroni
  • Giovanna Sarra
  • Natacha Kalline de Oliveira
  • Maria Stella Moreira
  • Maria Cristina Zindel Deboni
  • Márcia Martins Marques
Original Article



To analyze the potential of human dental pulp stem cells (hDPSCs) for maintaining their undifferentiated status and osteogenic differentiation capacity when arranged in cell sheets (CSs) for future application in bone replacement.

Materials and methods

CSs were formed after being induced for 10–15 days by clonogenic medium containing additional vitamin C (20 μg/ml). The cell viability of hDPSC4s in the CSs was followed until 96 h using the Live/Dead® assay. The cells of the CSs were enzymatically dissociated and then compared with the original hDPSC4s. The two cell types were characterized immunophenotypically by flow cytometry using specific mesenchymal stem cell-associated markers (CD105, CD146, CD44, STRO-1, and OCT3/4) and non-associated markers (CD34, CD45, and CD14). Osteogenic differentiation was analyzed with the Alizarin red assay.


Living cells were observed until 96 h in the CSs. Both cell types exhibited osteogenic differentiation and expressed the specific undifferentiated MSC-associated markers. Cells spontaneously detached from the CSs attached and proliferated at the bottom of the culture dishes.


Cells in the hDPSC4s cell sheets survived for at least 96 h. Moreover, the cells in the cell sheets retained their stemness and their osteogenic differentiation potential.

Clinical relevance

Cell sheets of hDPSCs could be employed as natural tri-dimensional structures for treating bone loss. This technique would be useful particularly for critical bone defects or any type of bone defects in patients carrying diseases that impair bone regeneration, such as diabetes mellitus, medication-related osteonecrosis of the jaw (MRONJ), and osteoporosis.


Cell sheet Human dental pulp stem cell Tissue engineering 


Funding information

ACFP is supported by the Foundation for Research Support of the State of Sao Paulo (Fapesp No. 2017/00760-6), and MMM is supported by the Brazilian National Coordination of Research (CNPq No. 307874/2014-1). This study was granted by FAPESP- Sao Paulo Research Foundation (No. 2017/16777–5).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was approved by the Research Ethical Committee (CAAE: 40392114.3.0000.0075) of the School of Dentistry, University of Sao Paulo, Brazil.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Schrag C, Chang YM, Tsai CY, Wei FC (2006) Complete rehabilitation of the mandible following segmental resection. J Surg Oncol 94(6):538–545CrossRefGoogle Scholar
  2. 2.
    Misch CM (2011) Maxillary autogenous bone grafting. Dent Clin N Am 55(4):697–713CrossRefGoogle Scholar
  3. 3.
    Li G, Zhou T, Lin S, Shi S, Lin Y (2017) Nanomaterials for craniofacial and dental tissue engineering. J Dent Res 96(7):725–732CrossRefGoogle Scholar
  4. 4.
    Kao ST, Scott DD (2007) A review of bone substitutes. Oral Maxillofac Surg Clin North Am 19:513–521CrossRefGoogle Scholar
  5. 5.
    Xinaris C, Morigi M, Benedetti V, Imberti B, Fabricio AS, Squarcina E, Benigni A, Gagliardini E, Remuzzi G (2013) A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 22(3):423–436CrossRefGoogle Scholar
  6. 6.
    de Sá Silva F, Almeida PN, Rettore JV, Maranduba CP, de Souza CM, de Souza GT, Zanette Rde S, Miyagi SP, Santos Mde O, Marques MM, Maranduba CM (2012) Toward personalized cell therapies by using stem cells: seven relevant topics for safety and success in stem cell therapy. J Biomed Biotechnol 2012:758102PubMedGoogle Scholar
  7. 7.
    Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636CrossRefGoogle Scholar
  8. 8.
    Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251CrossRefGoogle Scholar
  9. 9.
    Okano T, Yamada N, Okuhara M, Sakurai Y (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic–hydrophobic polymer surfaces. Biomaterials 16:297–303CrossRefGoogle Scholar
  10. 10.
    Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano (2005) T. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 33(26):6415–6422CrossRefGoogle Scholar
  11. 11.
    Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, Liu Y, Zhang C, Shi S, Wang S (2012) Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol 227(9):3216–3224. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pedroni ACF, Diniz IMA, Abe GL, Moreira MS, Sipert CR, Marques MM (2018) Photobiomodulation therapy and vitamin C on longevity of cell sheets of human dental pulp stem cells. J Cell Physiol 233:7026–7035CrossRefGoogle Scholar
  13. 13.
    Bardag-Gorce F, Oliva J, Wood A, Hoft R, Pan D, Thropay J, Makalinao A, French SW, Niihara Y (2015) Carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) for corneal epithelium reconstruction: a histological study. Ocul Surf 13:150–163CrossRefGoogle Scholar
  14. 14.
    Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, Damour O (2012) Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci 13:1325–1331CrossRefGoogle Scholar
  15. 15.
    Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20:708–710CrossRefGoogle Scholar
  16. 16.
    Takagi R, Yamato M, Kanai N, Murakami D, Kondo M, Ishii T, Ohki T, Namiki H, Yamamoto M, Okano T (2012) Cell sheet technology for regeneration of esophageal mucosa. World J Gastroenterol 18:5145–5150PubMedPubMedCentralGoogle Scholar
  17. 17.
    Yu M, Zhou W, Song Y, Yu F, Li D, Na S, Zou G, Zhai M, Xie C (2011) Development of mesenchymal stem cell-implant complexes by cultured cells sheet enhances osseointegration in type 2 diabetic rat model. Bone 49:387–394CrossRefGoogle Scholar
  18. 18.
    Gao H, Li B, Zhao L, Jin Y (2015) Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration. Int J Nanomedicine 10:4009–4027PubMedPubMedCentralGoogle Scholar
  19. 19.
    Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communication 11:571–576CrossRefGoogle Scholar
  20. 20.
    Takahashi H, Nakayama M, Shimizu T, Yamato M, Okano T (2011) Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation. Biomaterials 32:8830–8838CrossRefGoogle Scholar
  21. 21.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630CrossRefGoogle Scholar
  22. 22.
    Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842CrossRefGoogle Scholar
  23. 23.
    Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, Gabriel Chu TM, Goebel WS (2010) Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 4:73–81PubMedPubMedCentralGoogle Scholar
  24. 24.
    Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20:1394–1402CrossRefGoogle Scholar
  25. 25.
    Petridis X, Diamanti E, Trigas GC, Kalyvas D, Kitraki E (2015) Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. J Craniomaxillofac Surg 43:483–490CrossRefGoogle Scholar
  26. 26.
    Hirose Y, Yamamoto T, Nakashima M, Funahashi Y, Matsukawa Y, Yamaguchi M, Kawabata S, Gotoh M (2016) Injection of dental pulp stem cells promotes healing of damaged bladder tissue in a rat model of chemically induced cystitis. Cell Transplant 25:425–436CrossRefGoogle Scholar
  27. 27.
    Nicola FD, Marques MR, Odorcyk F, Arcego DM, Petenuzzo L, Aristimunha D, Vizuete A, Sanches EF, Pereira DP, Maurmann N, Dalmaz C, Pranke P, Netto CA (2017) Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 1663:95–105CrossRefGoogle Scholar
  28. 28.
    Yang C, Li X, Sun L, Guo W, Tian W (2017) Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng 14:026005CrossRefGoogle Scholar
  29. 29.
    Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806CrossRefGoogle Scholar
  30. 30.
    Potdar PD, D'Souza SB (2010) Ascorbic acid induces in vitro proliferation of human subcutaneous adipose tissue derived mesenchymal stem cells with upregulation of embryonic stem cell pluripotency markers Oct4 and SOX 2. Hum Cell 23(4):152–155CrossRefGoogle Scholar
  31. 31.
    Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M, Jansen JA (2007) The odontogenic potential of STRO-1 sorted rat dental pulp stem cells in vitro. J Tissue Eng Regen Med 1(1):66–73CrossRefGoogle Scholar
  32. 32.
    Yu J, He H, Tang C, Zhang G, Li Y, Wang R, Shi J, Jin Y (2010) Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 8:11–32CrossRefGoogle Scholar
  33. 33.
    Li M, Feng C, Gu X, He Q, Wei F (2017) Effect of cryopreservation on proliferation and differentiation of periodontal ligament stem cell sheets. Stem Cell Res Ther 8(1):77CrossRefGoogle Scholar
  34. 34.
    Nakamura A, Akahane M, Shigematsu H, Tadokoro M, Morita Y, Ohgushi H, Dohi Y, Imamura T, Tanaka Y (2010) Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model. Bone 46:418–424CrossRefGoogle Scholar
  35. 35.
    Wang X, Li G, Guo J, Yang L, Liu Y, Sun Q, Li R, Yu W (2017) Hybrid composites of mesenchymal stem cell sheets, hydroxyapatite, and platelet-rich fibrin granules for bone regeneration in a rabbit calvarial critical-size defect model. Exp Ther Med 13:1891–1899CrossRefGoogle Scholar
  36. 36.
    Long T, Zhu Z, Awad HA, Schwarz EM, Hilton MJ, Dong Y (2014) The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials 35:2752–2759CrossRefGoogle Scholar
  37. 37.
    Ueyama Y, Yagyuu T, Maeda M, Imada M, Akahane M, Kawate K, Tanaka Y, Kirita T (2016) Maxillofacial bone regeneration with osteogenic matrix cell sheets: an experimental study in rats. Arch Oral Biol 72:138–145CrossRefGoogle Scholar
  38. 38.
    Lei M, Li K, Li B, Gao LN, Chen FM, Jin Y (2014) Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials 35:6332–6343CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ana Clara Fagundes Pedroni
    • 1
  • Giovanna Sarra
    • 1
  • Natacha Kalline de Oliveira
    • 2
  • Maria Stella Moreira
    • 2
  • Maria Cristina Zindel Deboni
    • 1
  • Márcia Martins Marques
    • 1
  1. 1.Department of Restorative Dentistry, School of DentistryUniversity of Sao PauloSao PauloBrazil
  2. 2.Department of Maxillofacial Surgery, School of DentistryUniversity of Sao PauloSao PauloBrazil

Personalised recommendations