Advertisement

Clinical Oral Investigations

, Volume 23, Issue 1, pp 445–457 | Cite as

Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide

  • Fausto Zamparini
  • Francesco Siboni
  • Carlo Prati
  • Paola Taddei
  • Maria Giovanna GandolfiEmail author
Original Article
  • 272 Downloads

Abstract

Objective

The aim of the study was to evaluate chemical-physical properties and apatite-forming ability of three premixed calcium silicate materials containing monobasic calcium phosphate (CaH4P2O8) bioceramic, tantalum pentoxide and zirconium oxide, recently marketed for endodontics (TotalFill BC-Sealer, BC-RRM-Paste, BC-RRM-Putty).

Materials and methods

Microchemical and micromorphological analyses, radiopacity, initial and final setting times, calcium release and alkalising activity were tested. The nucleation of calcium phosphates (CaPs) and/or apatite after 28 days ageing was evaluated by ESEM-EDX and micro-Raman spectroscopy.

Results

BC-Sealer and BC-RRM-Paste showed similar initial (23 h), prolonged final (52 h) setting times and good radiopacity (> 7 mm Al); BC-RRM-Putty showed fast initial (2 h) and final setting times (27 h) and excellent radiopacity (> 9 mm Al). All materials induced a marked alkalisation (pH 11–12) up to 28 days and showed the release of calcium ions throughout the entire test period (cumulative calcium release 641–806 ppm). After 28 days ageing, a well-distributed mineral layer was present on all samples surface; EDX demonstrated relevant calcium and phosphorous peaks. B-type carbonated apatite and calcite deposits were identified by micro-Raman spectroscopy on all the 28-day-aged samples; the deposit thickness was higher on BC-RRM-Paste and BC-RRM-Putty, in agreement with calcium release data.

Conclusions

These materials met the required chemical and physical standards and released biologically relevant ions. The CaSi-CaH4P2O8 system present in the materials provided Ca and OH ions release with marked abilities to nucleate a layer of B-type carbonated apatite favoured/accelerated by the bioceramic presence.

Clinical relevance

The ability to nucleate apatite may lead many clinical advantages: In orthograde endodontics, it may improve the sealing ability by the deposition of CaPs at the material-root dentine interface, and in endodontic surgery, it could promote bone and periodontal tissue regeneration. As premixed materials, their application in endodontics may result easier in several complex endodontic situations (apicoectomy, root perforation, presence of wide/wet apices).

Keywords

TotalFill BC-Sealer TotalFill BC-RRM-Paste TotalFill BC-RRM-Putty Calcium silicate Monobasic calcium phosphate Bioceramics 

Notes

Funding

The study has been supported with the academic funds of Prof Gandolfi M.G. and Prof Taddei P.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not concern any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Niu LN, Jiao K, Wang TD, Zhang W, Camilleri J, Bergeron BE, Feng HL, Mao J, Chen JH, Pashley DH, Tay FR (2014) A review of the bioactivity of hydraulic calcium silicate cements. J Dent 42:517–533CrossRefGoogle Scholar
  2. 2.
    Prati C, Gandolfi MG (2015) Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater 31:351–370CrossRefGoogle Scholar
  3. 3.
    Xuereb M, Vella P, Damidot D, Sammut CV, Camilleri J (2015) In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J Endod 41:111–124CrossRefGoogle Scholar
  4. 4.
    Ma S, Yang Y, Carnes DL, Kim K, Park S, Oh SH, Ong JL (2005) Effects of dissolved calcium and phosphorous on osteoblast responses. J Oral Implantol 31:61–67CrossRefGoogle Scholar
  5. 5.
    Sun J, Wei L, Liu X, Li J, Li B, Wang G, Meng F (2009) Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater 5:1284–1293CrossRefGoogle Scholar
  6. 6.
    Gandolfi MG, Taddei P, Tinti A, Dorigo De Stefano E, Prati C (2011) Alpha-TCP improves the apatite-formation ability of calcium-silicate hydraulic cement soaked in phosphate solutions. Mater Sci Eng C Mater Biol Appl 31:1412–1422CrossRefGoogle Scholar
  7. 7.
    Gandolfi MG, Shah SN, Feng R, Prati C, Akintoye SO (2011) Biomimetic calcium-silicate cements support differentiation of human orofacial mesenchymal stem cells. J Endod 37:1102–1108CrossRefGoogle Scholar
  8. 8.
    Gandolfi MG, Taddei P, Siboni F, Modena E, Ciapetti G, Prati C (2011) Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior. Dent Mater 27:e134–e157CrossRefGoogle Scholar
  9. 9.
    Candeiro GT, Correia FC, Duarte MA, Ribeiro-Siqueira DC, Gavini G (2012) Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod 38:842–845CrossRefGoogle Scholar
  10. 10.
    Lee JK, Kwak SW, Ha JH, Lee W, Kim HC (2017) Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers. Bioinorg Chem Appl 2017:2582849CrossRefGoogle Scholar
  11. 11.
    Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, Pashley DH, Tay FR (2011) Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod 37:673–677CrossRefGoogle Scholar
  12. 12.
    Han L, Okiji T (2013) Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J 46:808–814CrossRefGoogle Scholar
  13. 13.
    Moinzadeh AT, Aznar Portoles C, Schembri Wismayer P, Camilleri J (2016) Bioactivity potential of EndoSequence BC RRM putty. J Endod 42:615–621CrossRefGoogle Scholar
  14. 14.
    Guo YJ, Du TF, Li HB, Shen Y, Mobuchon C, Hieawy A, Wang ZJ, Yang Y, Ma J, Haapasalo M (2016) Physical properties and hydration behavior of a fast-setting bioceramic endodontic material. BMC Oral Health 20:16–23Google Scholar
  15. 15.
    Shokouhinejad N, Nekoofar MH, Razmi H, Sajadi S, Davies TE, Saghiri MA, Gorjestani H, Dummer PMH (2012) Bioactivity of EndoSequence root repair material and bioaggregate. Int Endod J 45:1127–1134CrossRefGoogle Scholar
  16. 16.
    Hansen SW, Marshall JG, Sedgley CM (2011) Comparison of intracanal EndoSequence root repair material and ProRoot MTA to induce pH changes in simulated root resorption defects over 4 weeks in matched pairs of human teeth. J Endod 37:502–506CrossRefGoogle Scholar
  17. 17.
    Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG (2017) Properties of bioroot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J 50:e120–e136CrossRefGoogle Scholar
  18. 18.
    Gandolfi MG, Ciapetti G, Taddei P, Perut F, Tinti A, Cardoso MV, Van Meerbeek B, Prati C (2010) Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dent Mater 26:974–992CrossRefGoogle Scholar
  19. 19.
    Gandolfi MG, Siboni F, Prati C (2016) Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer. Dent Mater 32:e113–e126CrossRefGoogle Scholar
  20. 20.
    Siboni F, Taddei P, Prati C, Gandolfi MG (2017) Properties of NeoMTA plus and MTA plus cements for endodontics. Int Endod J 50:e83–e94CrossRefGoogle Scholar
  21. 21.
    Barros J, Silva MG, Rodrigues MA, Alves FR, Lopes MA, Pina-Vaz I, Siqueira JF Jr (2014) Antibacterial, physicochemical and mechanical properties of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. Int Endod J 47:725–734CrossRefGoogle Scholar
  22. 22.
    Unosson EJ, Persson C, Engqvist H (2015) An evaluation of methods to determine the porosity of calcium phosphate cements. J Biomed Mater Res B Appl Biomater 103:62–71CrossRefGoogle Scholar
  23. 23.
    He D, Zhuang C, Xu S, Ke X, Yang X, Zhang L, Yang G, Chen X, Mou X, Liu A, Gou Z (2016) 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances. Bioactive Mater 1:85–92CrossRefGoogle Scholar
  24. 24.
    Gandolfi MG, Spagnuolo G, Siboni F, Procino A, Rivieccio V, Pelliccioni GA, Prati C, Rengo S (2015) Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response. Clin Oral Investig 19:2075–2089CrossRefGoogle Scholar
  25. 25.
    Gandolfi MG, Van Landuyt K, Taddei P, Modena E, Van Meerbeek B, Prati C (2010) Environmental scanning electron microscopy connected with energy dispersive x-ray analysis and raman techniques to study proRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time. J Endod 2010 36:851–857.Google Scholar
  26. 26.
    Gandolfi MG, Taddei P, Modena E, Siboni F, Prati C (2013) Biointeractivity-related versus chemi/physisorption-related apatite precursor-forming ability of current root end filling materials. J Biomed Mater Res B Appl Biomater 101:1107–1123CrossRefGoogle Scholar
  27. 27.
    Witke WÖ, Skopp A, Woydt M (2001) Raman microprobe spectroscopy and transmission electron microscopy of thermal sprayed ZrO2 coatings before and after rub testing of outer air seals. J Raman Spectrosc 32:1008–1014CrossRefGoogle Scholar
  28. 28.
    Conjeaud M, Boyer H (1980) Some possibilities of Raman microprobe in cement chemistry. Cem Concr Res 10:61–70CrossRefGoogle Scholar
  29. 29.
    Sarma LP, Prasad PSR, Ravikumar N (1998) Raman spectroscopic study of phase transitions in natural gypsum. J Raman Spectrosc 29:851–856CrossRefGoogle Scholar
  30. 30.
    Dobal PS, Katiyar RS, Jiang Y, Guo R, Bhalla AS (2000) Raman scattering study of a phase transition in tantalum pentoxide. J Raman Spectrosc 31:1061–1065CrossRefGoogle Scholar
  31. 31.
    Nelson DG, Featherstone JD (1982) Preparation, analysis, and characterization of carbonated apatites. Calcif Tissue Int 34:S69–S81Google Scholar
  32. 32.
    Martinez-Ramirez S, Sanchez-Cortes S, Garcia Ramos JV, Domingo C, Fortes C, Blanco-Varela MT (2003) Micro-Raman spectroscopy applied to depth profiles of carbonates formed in lime mortar. Cem Concr Res 33:2063–2068CrossRefGoogle Scholar
  33. 33.
    Newbury DE (2009) Mistakes encountered during automatic peak identification of minor and trace constituents in electron-excited energy dispersive X-ray microanalysis. Scanning 31:91–101CrossRefGoogle Scholar
  34. 34.
    Collepardi MM (2010) Water reducers/retarders, chapter 6 in concrete admixtures handbook. Properties, science and technology. Ed Ramachandran VS, pp 286–409Google Scholar
  35. 35.
    Camilleri J, Sorrentino F, Damidot D (2013) Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, biodentine and MTA angelus. Dent Mater 29:580–593CrossRefGoogle Scholar
  36. 36.
    Marciano MA, Duarte MA, Camilleri J (2015) Dental discoloration caused by bismuth oxide in MTA in the presence of sodium hypochlorite. Clin Oral Investig 19:2201–2209CrossRefGoogle Scholar
  37. 37.
    Gandolfi MG, Siboni F, Primus CM, Prati C (2014) Ion release, porosity, solubility, and bioactivity of MTA plus tricalcium silicate. J Endod 40:1632–1637CrossRefGoogle Scholar
  38. 38.
    Rashid F, Shiba H, Mizuno N, Mouri Y, Fujita T, Shinohara H, Ogawa T, Kawaguchi H, Kurihara H (2003) The effect of extracellular calcium ion on gene expression of bone-related proteins inhuman pulp cells. J Endod 29:104–107CrossRefGoogle Scholar
  39. 39.
    Suzuki Y, Hayashi M, Tanabe N, Yasukawa T, Hirano Y, Takagi SC, Chow L, Suzuki N, Ogiso B (2015) Effect of a novel fluorapatite-forming calcium phosphate cement with calcium silicate on osteoblasts in comparison with mineral trioxide aggregate. J Oral Sci 57:25–30CrossRefGoogle Scholar
  40. 40.
    Mizuno M, Banzai Y (2008) Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int Endod J 41:933–938CrossRefGoogle Scholar
  41. 41.
    Hakki SS, Bozkurt BS, Gandolfi MG, Prati C, Belli S (2013) The response of cementoblasts to calcium phosphate resin-based and calcium silicate-based commercial sealers. Int Endod J 46:242–252CrossRefGoogle Scholar
  42. 42.
    Carvalho CN, Grazzotin-Soares R, de Miranda Candeiro GT, Gallego Martinez L, de Souza JP, Santos Oliveira P, Bauer J, Gavini G (2017) Micro push-out bond strength and bioactivity analysis of a bioceramic root canal sealer. Iran Endod J 12:343–348Google Scholar
  43. 43.
    Wang M, Qian R, Bao M, Gu C, Zhu P (2018) Raman, FT-IR and XRD study of bovine bone mineral and carbonated apatites with different carbonate levels. Mater Lett 210:203–206CrossRefGoogle Scholar
  44. 44.
    Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481CrossRefGoogle Scholar
  45. 45.
    Garskaite E, Gross KA, Yang SW, Yang TCK, Yang JC, Kareiva A (2014) Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp). CrystEngComm 16:3950–3959CrossRefGoogle Scholar
  46. 46.
    Awonusi A, Morris M, Tecklenburg M (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52CrossRefGoogle Scholar
  47. 47.
    Smith SJ, Emery R, Pitsillides A, Clarkin CE, Mahajan S (2017) Detection of early osteogenic commitment in primary cells using Raman spectroscopy. Analyst 142:1962–1973CrossRefGoogle Scholar
  48. 48.
    Lloyd WR, Agarwal S, Nigwekar SU, Esmonde-White K, Loder S, Fagan S, Goverman D, Olsen BR, Jumlongras D, Morris MD, Levi B (2015) Raman spectroscopy for label-free identification of calciphylaxis. J Biomed Opt 20:080501/1–080501/3CrossRefGoogle Scholar
  49. 49.
    Tarnowski CP, Ignelzi MA Jr, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126CrossRefGoogle Scholar
  50. 50.
    Wopenka CB, Kent A, Pasteris JD, Yoon Y, Thomopoulos S (2008) The tendon-to-bone transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue samples. Appl Spectrosc 62:1285–1294CrossRefGoogle Scholar
  51. 51.
    Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901CrossRefGoogle Scholar
  52. 52.
    Gandolfi MG, Parrilli AP, Fini M, Prati C, Dummer PMH (2013) 3D micro-CT analysis of the interface voids associated with Thermafil root fillings used with AH plus or a flowable MTA sealer. Int Endod J 46:253–263CrossRefGoogle Scholar
  53. 53.
    Al-Rabeah E, Perinpanayagam H, MacFarland D (2006) Human alveolar bone cells interact with ProRoot and tooth-colored MTA. J Endod 32:872–875CrossRefGoogle Scholar
  54. 54.
    Matsumoto S, Hayashi M, Suzuki Y, Suzuki N, Maeno M, Ogiso B (2013) Calcium ions released from mineral trioxide aggregate convert the differentiation pathway of C2C12 cells into osteoblast lineage. J Endod 39:68–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Biomaterials and Oral Pathology, Dental School, Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
  2. 2.Biochemistry Unit, Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly

Personalised recommendations