Clinical Oral Investigations

, Volume 23, Issue 1, pp 413–421 | Cite as

Bioactive glass-ceramic bone repair associated or not with autogenous bone: a study of organic bone matrix organization in a rabbit critical-sized calvarial model

  • Claudia Cristina BiguettiEmail author
  • Franco Cavalla
  • Carla Roberta Tim
  • Patrícia Pinto Saraiva
  • Wilson Orcini
  • Leandro De Andrade Holgado
  • Ana Claudia Muniz Rennó
  • Mariza Akemi Matsumoto
Original Article



The aim of the study was to analyze bone matrix (BMX) organization after bone grafting and repair using a new bioactive glass-ceramic (Biosilicate®) associated or not with particulate autogenous bone graft.

Material and methods

Thirty rabbits underwent surgical bilateral parietal defects and divided into groups according to the materials used: (C) control—blood clot, (BG) particulate autogenous bone, (BS) bioactive glass-ceramic, and BG + BS. After 7, 14, and 30 days post-surgery, a fragment of each specimen was fixed in − 80 °C liquid nitrogen for zymographic evaluation, while the remaining was fixed in 10% formalin for histological birefringence analysis.


The results of this study demonstrated that matrix organization in experimental groups was significantly improved compared to C considering collagenous organization. Zymographic analysis revealed pro-MMP-2, pro-MMP-9, and active (a)-MMP-2 in all groups, showing gradual decrease of total gelatinolytic activity during the periods. At day 7, BG presented more prominent gelatinolytic activity for pro-MMP-2 and 9 and a-MMP-2, when compared to the other groups. In addition, at day 7, a 53% activation ratio (active form/[active form + latent form]) was evident in C group, 33% in BS group, and 31% in BG group.


In general, BS allowed the production of a BMX similar to BG, with organized collagen deposition and MMP-2 and MMP-9 disponibility, permitting satisfactory bone remodeling at the late period.

Clinical relevance

The evaluation of new bone substitute, with favorable biological properties, opens the possibility for its use as a viable and efficient alternative to autologous bone graft.


Biomaterials Bone repair Picrosirius red Vitroceramic Zymography 



The authors are grateful to Maira Cristina Rondina Couto for histology assistance.


This work was supported by São Paulo Research Foundation (FAPESP/SP), grant numbers 2008/11485-8; 2009/17294-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Ethical Committee for Animal Research of Sagrado Coração University (protocol # 110/09), and the Brazilian College of Animal Experimentation (COBEA) guidelines for the care and use of laboratory animals.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Horch RE, Kneser U, Polykandriotis E, Schmidt VJ, Sun J, Arkudas A (2012) Tissue engineering and regenerative medicine—where do we stand? J Cell Mol Med 16:1157–1165. CrossRefGoogle Scholar
  2. 2.
    Eweida AM, Nabawi AS, Abouarab M, Kayed M, Habashi E, Etaby A, Khalil MR, Shawky MS, Kneser U, Horch RE, Nagy N, Marei MK (2014) Enhancing mandibular bone regeneration and perfusion via axial vascularization of scaffolds. Clin Oral Invest 18:1671–1678. CrossRefGoogle Scholar
  3. 3.
    Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRefGoogle Scholar
  4. 4.
    Draenert FG, Huetzen D, Neff A, Mueller WEG (2014) Vertical bone augmentation procedures: basics and techniques in dental implantology. J Biomed Mater Res A 102(5):1605–1613. CrossRefGoogle Scholar
  5. 5.
    Peitl O, Zanotto ED, La Torre GP. Hench LL (1997) Patent WO/1997/041079Google Scholar
  6. 6.
    Zanotto ED, Ravagnani C, Peitl OF, Panzeri H, Guimarães LEH (2004) Fundação Universidade Federal de São Carlos, Universidade de São Paulo. Process and compositions for preparing particulate, bioactive or resorbable biosilicates for use in the treatment of oral ailments. Int. C. C03C10/00, WO2004/074199Google Scholar
  7. 7.
    Peitl O, Zanotto ED, Serbena FC, Hench LL (2012) Acta Biomater 8(1):321–332. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics CrossRefGoogle Scholar
  8. 8.
    Clupper DC, Gough JE, Hall MM, Clare AG, LaCourse WC, Hench LL (2003) In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. J Biomed Mater Res A 67((1):285–294. CrossRefGoogle Scholar
  9. 9.
    Tsigkou O, Jones JR, Polak JM, Stevens MM (2009) Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials 30(21):3542–3550. CrossRefGoogle Scholar
  10. 10.
    Granito RN, Rennó AC, Ravagnani C, Bossini PS, Mochiuti D, Jorgetti V, Driusso P, Peitl O, Zanotto ED, Parizotto NA, Oishi J (2011) In vivo biological performance of a novel highly bioactive glass-ceramic (Biosilicate®): a biomechanical and histomorphometric study in rat tibial defects. J Biomed Mater Res B Appl Biomater 97((1):139–147. CrossRefGoogle Scholar
  11. 11.
    Roriz VM, Rosa AL, Peitl O, Zanotto ED, Panzeri H, de Oliveira PT (2010) Efficacy of a bioactive glass-ceramic (Biosilicate) in the maintenance of alveolar ridges and in osseointegration of titanium implants. Clin Oral Implants Res 21(2):148–155. CrossRefGoogle Scholar
  12. 12.
    Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, Panzeri H, Rosa AL, de Oliveira PT (2007) In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate). J Biomed Mater Res A 82((3):545–557. CrossRefGoogle Scholar
  13. 13.
    van Houdt CI, Tim CR, Crovace MC, Zanotto ED, Peitl O, Ulrich DJ, Jansen JA, Parizotto NA, Renno AC, van den Beucken JJ (2015) Bone regeneration and gene expression in bone defects under healthy and osteoporotic bone conditions using two commercially available bone graft substitutes Biomed Mater. 8;10(3):035003. doi:
  14. 14.
    Matsumoto MA, Caviquioli G, Biguetti CC, Holgado Lde A, Saraiva PP, Renno AC et al (2012) A novel bioactive vitroceramic presents similar biological responses as autogenous bone grafts. J Mater Sci Mater Med 23(6):1447–1456. CrossRefGoogle Scholar
  15. 15.
    Seeman E, Delmas P (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261. CrossRefGoogle Scholar
  16. 16.
    Siegmund T, Allen MR, Burr DB (2008) Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech 41(7):1427–1435. CrossRefGoogle Scholar
  17. 17.
    Martin RB, Lau ST, Mathews PV, Gibson VA, Stover SM (1996) Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. J Biomech 29(12):1515–1521CrossRefGoogle Scholar
  18. 18.
    Ramasamy JG, Akkus O (2007) Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. J Biomech 40(4):910–918. CrossRefGoogle Scholar
  19. 19.
    Krane SM, Inada M (2008) Matrix metalloproteinases and bone. Bone 43(1):7–18. CrossRefGoogle Scholar
  20. 20.
    Nyman JS, Lynch CC, Perrien DS, Thiolloy S, O'Quinn EC, Patil CA, Bi X, Pharr GM, Mahadevan-Jansen A, Mundy GR (2011) Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res 26(6):1252–1260. CrossRefGoogle Scholar
  21. 21.
    Bassil J, Senni K, Changotade S, Baroukh B, Kassis C, Naaman N, Godeau G (2011) Expression of MMP-2, 9 and 13 in newly formed bone after sinus augmentation using inorganic bovine bone in human. J Periodontal Res 46(6):756–762. CrossRefGoogle Scholar
  22. 22.
    Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803(1):39–54. CrossRefGoogle Scholar
  23. 23.
    Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97(8):4052–4057. CrossRefGoogle Scholar
  24. 24.
    Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA (2003) Altered fracture repair in the absence of MMP-9. Development 130(17):4123–4133. CrossRefGoogle Scholar
  25. 25.
    Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 6;15(1):35–44. CrossRefGoogle Scholar
  26. 26.
    Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD, Dinh DH, Rao JS (2011) MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One 6(6):e20614. CrossRefGoogle Scholar
  27. 27.
    Lattouf R, Younes R, Lutomski D, Naaman N, Godeau G, Senni K, Changotade S (2014) Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem 62(10):751–758. CrossRefGoogle Scholar
  28. 28.
    Garavello-Freitas I, Baranauskas V, Joazeiro PP, Padovani CR, Dal Pai-Silva M, da Cruz-Hofling MA (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B 70(2):81–89. CrossRefGoogle Scholar
  29. 29.
    Bossini PS, Renno AC, Ribeiro DA, Fangel R, Peitl O, Zanotto ED et al (2010) Biosilicate(R) and low-level laser therapy improve bone repair in osteoporotic rats. J Tissue Eng Regen Med 5(3):229–237. CrossRefGoogle Scholar
  30. 30.
    Vivan RR, Mecca CE, Biguetti CC, Renno ACM, Okamoto R, Cavenago BC, Duarte MH, Matsumoto MA (2016) Experimental maxillary sinus augmentation using a highly bioactive glass ceramic. J Mater Sci Mater Med 27:41. CrossRefGoogle Scholar
  31. 31.
    Osorio C, Cavalla F, Paula-Lima A, Dıaz-Araya G, Vernal R, Ahumada P, Gamonal J, Herandez M (2015) H2O2 activates matrix metalloproteinases through the nuclear factor kappa B pathway and Ca2+signals in human periodontal fibroblasts. J Periodontal Res 50(6):798–806. CrossRefGoogle Scholar
  32. 32.
    Cavalla F, Osorio C, Paredes R, Valenzuela MA, García-Sesnich J, Sorsa T, Tervahartiala T, Hernández M (2015) Matrix metalloproteinases regulate extracellular levels of SDF-1/CXCL12, IL-6 and VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts. Cytokine 73(1):114–121. CrossRefGoogle Scholar
  33. 33.
    Maiorana C, Beretta M, Salina S, Santoro F (2005) Reduction of autogenous bone graft resorption by means of Bio-Oss coverage: a prospective study. Int J Periodontics Restorative Dent 25(1):19–25. Google Scholar
  34. 34.
    Martins CH, Carvalho TC, Souza MG, Ravagnani C, Peitl O, Zanotto ED, Panzeri H, Casemiro LA (2011) Assessment of antimicrobial effect of Biosilicate against anaerobic, microaerophilic and facultative anaerobic microorganisms. J Mater Sci Mater Med 22(6):1439–1446. CrossRefGoogle Scholar
  35. 35.
    Marx RE (2007) Bone and bone graft healing. Oral Maxillofac Surg Clin North Am 19(4):455–466. CrossRefGoogle Scholar
  36. 36.
    Sugita S, Matsumoto T (2013) Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues. J Biomech 46(7):1403–1407. CrossRefGoogle Scholar
  37. 37.
    Vieira AE, Repeke CE, Ferreira Junior SB, Colavite PM, Biguetti CC, Oliveira RC, Asssis GF, Taga R, Trombone APF, Garlet GP (2015) Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization. PLoS One 10(5): e012802 doi:, e0128021
  38. 38.
    Lu M, Rabie AB (2006) Matrix metalloproteinase-9 regulates graft bone resorption. Angle Orthod 76(4):598–604Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Claudia Cristina Biguetti
    • 1
    • 2
    Email author
  • Franco Cavalla
    • 3
  • Carla Roberta Tim
    • 4
  • Patrícia Pinto Saraiva
    • 1
  • Wilson Orcini
    • 5
  • Leandro De Andrade Holgado
    • 6
  • Ana Claudia Muniz Rennó
    • 7
  • Mariza Akemi Matsumoto
    • 8
  1. 1.Research and Postgraduate Pro-RectoryUniversidade do Sagrado Coração – USCJardim Brasil BauruBrazil
  2. 2.Oral Biology Doctoral’s ProgramBauru School of Dentistry, São Paulo University – FOB/USPBauruBrazil
  3. 3.Department of Conservative Dentistry, School of DentistryUniversidad de ChileSantiagoChile
  4. 4.Biotechnology Doctoral’s ProgramSão Carlos Federal University – UFSCARSão CarlosBrazil
  5. 5.Molecular Biology Laboratory, Research and Postgraduate Pro-RectoryUniversidade do Sagrado Coração – USCJardimBrazil
  6. 6.Discipline of Oral and Maxillofacial Surgery, Department of Health SciencesUniversidade Sagrado Coração – USCJardim Brasil BauruBrazil
  7. 7.Department of BioscienceFederal University of São Paulo, Campus Baixada Santista - UNIFESPSantosBrazil
  8. 8.Discipline of Histology and Embriology, Department of Basic SciencesSão Paulo State University – FOA/UNESPJardim Nova Iorque AraçatubaBrazil

Personalised recommendations