Advertisement

Clinical Oral Investigations

, Volume 23, Issue 1, pp 369–379 | Cite as

Does the association of blood-derived growth factors to nanostructured carbonated hydroxyapatite contributes to the maxillary sinus floor elevation? A randomized clinical trial

  • Carlos Fernando de Almeida Barros Mourão
  • Emanuelle Stellet Lourenço
  • Jhonathan Raphael Barros Nascimento
  • Rafael Coutinho Mello Machado
  • Alexandre Malta Rossi
  • Paulo Emílio Corrêa Leite
  • José Mauro Granjeiro
  • Gutemberg Gomes Alves
  • Mônica Diuana Calasans-MaiaEmail author
Original Article

Abstract

Objective

The combination of calcium phosphate with blood-derived growth factors (BDGF) has been widely used in bone regeneration procedures although its benefits are still unclear. The purpose of this study was to evaluate whether or not BDGF improves the efficacy of a modified carbonated calcium phosphate biomaterial in sinus floor augmentation.

Material and methods

Ten patients underwent 20 sinus floor augmentation procedures using nanostructured carbonated hydroxyapatite (cHA) microspheres alone or associated with BDGF in a randomized controlled clinical trial. The in vitro release of growth factors was assessed by an elution assay. Bone grafts were randomly implanted in the right and left maxillary sinuses of each participant, associated either with a 0.9% saline solution or BDGF. Bone gain was evaluated through cone beam tomography after 180 days.

Results

Nine women and one man composed the sample. The blood-derived concentrates were able to release high levels of growth factors and cytokines. A significant clinical advantage was observed in the use of the BDGF after fibrin polymerization around the biomaterial microspheres, optimizing the surgical procedures, thereby reducing the time and displacement, and improving the adaptation of the biomaterial in the maxillary sinus. No synergistic effect was observed in bone formation when cHA was associated with BDGF (p > 0.05).

Conclusion

Equivalent new bone formation was observed for cHA in the presence or absence of the BDGF concentrate in bilateral sinus floor elevation after 6 months. Blood-derived growth factors did not improve bone repair when associated with calcium phosphate in sinus lift procedures.

Keywords

Clinical trials Growth factors Biomaterials Sinus floor elevation 

Notes

Acknowledgements

Authors thank the Laboratório Nacional de Luz Síncrotron for the physicochemical evaluation of the biomaterials.

Funding

This study if financially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), process no. E-26/110.303/2014, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). INCT-REGENERA/CNPQ/FAPERJ.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/ national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical Standards (CONEP, Brazil no. 1.345.263).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

784_2018_2445_Fig7_ESM.gif (31 kb)
Supplementary Figure 1

Fourier-transformed infrared (FTIR) spectra of the nanostructured carbonated hydroxyapatite without thermal treatment. The arrows point to the carbonate and phosphate peaks and the presence of the H2O group, characterizing a non-sintered material. (GIF 31 kb)

784_2018_2445_MOESM1_ESM.tif (6.2 mb)
High resolution image (TIF 6383 kb)
784_2018_2445_Fig8_ESM.gif (21 kb)
Supplementary Figure 2

X-ray diffraction pattern (XRD) of nanostructured carbonated hydroxyapatite samples without thermal treatment. (GIF 20 kb)

784_2018_2445_MOESM2_ESM.tif (5.5 mb)
High resolution image (TIF 5657 kb)
784_2018_2445_Fig9_ESM.gif (69 kb)
Supplementary Figure 3

A. X-ray microtomography of the nanostructured carbonated hydroxyapatite sphere; B. Material volume (44.6%) C. Pores volume (55.4%). (GIF 69 kb)

784_2018_2445_MOESM3_ESM.tif (3.2 mb)
High resolution image (TIF 3289 kb)

References

  1. 1.
    Becktor JP, Isaksson S, Sennerby L (2007) Endosseous implants and bone augmentation in the partially dentate maxilla: an analysis of 17 patients with a follow-up of 29 to 101 months. Int J Oral Maxillofac Implants 22:603–608Google Scholar
  2. 2.
    Toljanic J, Baer R, Ekstrand KTA (2009) Implant rehabilitation of the atrophic edentulous maxilla including immediate fixed provisional restoration without the use of bone grafting: a review of 1-year outcome data from a long-term prospective clinical trial. Int J Oral Maxillofac Implant 24:518–526Google Scholar
  3. 3.
    Taruna M, Chittaranjan B, Sudheer N et al (2014) Prosthodontic perspective to all-on-4® concept for dental implants. J Clin Diagn Res 8:16–19.  https://doi.org/10.7860/JCDR/2014/9648.5020 Google Scholar
  4. 4.
    Testori T, Wallace SS, Trisi P, Capelli M, Zuffetti F, del Fabbro M (2013) Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: a multicenter, randomized, controlled, clinical histomorphometric trial. Int J Periodontics Restor Dent 33:467–475.  https://doi.org/10.11607/prd.1423 CrossRefGoogle Scholar
  5. 5.
    Calasans-Maia MD, Mourão CF d AB, Alves ATNN, Sartoretto SC, de Uzeda MJPG, Granjeiro JM (2015a) Maxillary sinus augmentation with a new xenograft: a randomized controlled clinical trial. Clin Implant Dent Relat Res 17:586–593.  https://doi.org/10.1111/cid.12289 CrossRefGoogle Scholar
  6. 6.
    Fugazzotto PA, Vlassis J (1998) Long-term success of sinus augmentation using various surgical approaches and grafting materials. Int J Oral Maxillofac Implant 13:52–58Google Scholar
  7. 7.
    Trombelli L, Franceschetti G, Rizzi A, Minenna P, Minenna L, Farina R (2012) Minimally invasive transcrestal sinus floor elevation with graft biomaterials. A randomized clinical trial. Clin Oral Implants Res 23:424–432.  https://doi.org/10.1111/j.1600-0501.2011.02318.x CrossRefGoogle Scholar
  8. 8.
    Matern JF, Keller P, Carvalho J, Dillenseger JP, Veillon F, Bridonneau T (2016) Radiological sinus lift: a new minimally invasive CT-guided procedure for maxillary sinus floor elevation in implant dentistry. Clin Oral Implants Res 27:341–347.  https://doi.org/10.1111/clr.12549 CrossRefGoogle Scholar
  9. 9.
    Chiapasco M, Casentini P, Zaniboni M (2009) Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants 24(Suppl):237–259Google Scholar
  10. 10.
    Stern A, Green J (2012) Sinus lift procedures: an overview of current techniques. Dent Clin N Am 56:219–233.  https://doi.org/10.1016/j.cden.2011.09.003 CrossRefGoogle Scholar
  11. 11.
    Tatum OH Jr (1977) Maxillary sinus grafting for endosseous implants. Presented at the Annual Meeting of the Alabama Implant Study Group, Birmingham, ALGoogle Scholar
  12. 12.
    Boyne PJ, James RA (1980) Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg 38(8):613–616Google Scholar
  13. 13.
    Wood RM, Moore DL (1988) Grafting of the maxillary sinus with intraorally harvested autogenous bone prior to implant placement. Int J Oral Maxillofac Implants 3:209-214Google Scholar
  14. 14.
    Del Fabbro M, Corbella S, Weinstein T et al (2012) Implant survival rates after osteotome-mediated maxillary sinus augmentation: a systematic review. Clin Implant Dent Relat Res 14:159–168.  https://doi.org/10.1111/j.1708-8208.2011.00399.x CrossRefGoogle Scholar
  15. 15.
    Del Fabbro M, Rosano G, Taschieri S (2008) Implant survival rates after maxillary sinus augmentation. Eur J Oral Sci 116:497–506.  https://doi.org/10.1111/j.1600-0722.2008.00571.x CrossRefGoogle Scholar
  16. 16.
    Kang T (2008) Sinus elevation using a staged osteotome technique for site development prior to implant placement in sites with less than 5 mm of native bone: a case report. Int J Periodontics Restorative Dent 28:73–81Google Scholar
  17. 17.
    Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA (2010) A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev 16:493–507Google Scholar
  18. 18.
    Mertens C, Wiens D, Steveling HG, Sander A, Freier K (2014) Maxillary sinus-floor elevation with nanoporous biphasic bone graft material for early implant placement. Clin Implant Dent Relat Res 16:365–373.  https://doi.org/10.1111/j.1708-8208.2012.00484.x CrossRefGoogle Scholar
  19. 19.
    Schmitt CM, Moest T, Lutz R, Neukam FW, Schlegel KA (2015) Anorganic bovine bone (ABB) vs. autologous bone (AB) plus ABB in maxillary sinus grafting. A prospective non-randomized clinical and histomorphometrical trial. Clin Oral Implants Res 26:1043–1050.  https://doi.org/10.1111/clr.12396 CrossRefGoogle Scholar
  20. 20.
    Calasans-Maia MD, Melo BR, Alves AT et al (2015) Cytocompatibility and biocompatibility of nanostructured carbonated hydroxyapatite spheres for bone repair. J Appl Oral Sci 23(6):599–608.  https://doi.org/10.1590/1678-775720150122 CrossRefGoogle Scholar
  21. 21.
    Babbush C (1998) Sinus lift revisited: an update on current implant-related procedures. Sinus lift revisited: an update on current implant-related procedures. Dent Implant Updat 9:1–5Google Scholar
  22. 22.
    Wang G, Moya S, Lu Z, Gregurec D, Zreiqat H (2015) Enhancing orthopedic implant bioactivity: refining the nanotopography. Nanomedicine (Lond) 10:1327–1341.  https://doi.org/10.2217/nnm.14.216 CrossRefGoogle Scholar
  23. 23.
    Moraschini V, Barboza ESP (2015) Effect of autologous platelet concentrates for alveolar socket preservation: a systematic review. Int J Oral Maxillofac Surg 44:632–641.  https://doi.org/10.1016/j.ijom.2014.12.010 CrossRefGoogle Scholar
  24. 24.
    Dohle E, El Bagdadi K, Sader R, Choukroun J, James Kirkpatrick CGS (2017) PRF-based matrices to improve angiogenesis in an in vitro co-culture model for bone tissue engineering. J Tissue Eng Regen Med 16Google Scholar
  25. 25.
    Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endod 85(6):638–646Google Scholar
  26. 26.
    Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, Gogly B (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral surgery, oral med oral Pathol oral Radiol. Endodontology 101:45–50.  https://doi.org/10.1016/j.tripleo.2005.07.008 Google Scholar
  27. 27.
    Dohan Ehrenfest DM, Pinto NR, Pereda A, Jiménez P, Corso MD, Kang BS, Nally M, Lanata N, Wang HL, Quirynen M (2017) The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 24:1–14.  https://doi.org/10.1080/09537104.2017.1293812 Google Scholar
  28. 28.
    Mourão C, Valiense H, Melo E, Mourão NMM (2015) Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: technical note. Rev Col Bras Cir 42:421–423CrossRefGoogle Scholar
  29. 29.
    Miron R, Fujioka-Kobayashi M, Hernandez M, Kandalam U, Zhang Y, Ghanaati SCJ (2017) Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry? Clin Oral Investig 2Google Scholar
  30. 30.
    Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ 340:c332Google Scholar
  31. 31.
    Carl E. Misch (2008) Contemporary Implant Dent, 3 Ed.Google Scholar
  32. 32.
    Stübinger S, Ghanaati S, Orth C, Hilbig U, Saldamli B, Biesterfeld S, Kirkpatrick CJ, Sader RA (2009) Maxillary sinus grafting with a nano-structured biomaterial: preliminary clinical and histological results. Eur Surg Res 42:143–149.  https://doi.org/10.1159/000197215 CrossRefGoogle Scholar
  33. 33.
    Gassling V, Purcz N, Braesen JH, Will M, Gierloff M, Behrens E, Açil Y, Wiltfang J (2013) Comparison of two different absorbable membranes for the coverage of lateral osteotomy sites in maxillary sinus augmentation: a preliminary study. J Cranio-Maxillofacial Surg 41:76–82.  https://doi.org/10.1016/j.jcms.2012.10.015 CrossRefGoogle Scholar
  34. 34.
    Calasans-Maia M, Resende R, Fernandes G, Calasans-Maia J, Alves AT, Granjeiro JM (2014) A randomized controlled clinical trial to evaluate a new xenograft for alveolar socket preservation. Clin Oral Impl Res 25:1125–1130Google Scholar
  35. 35.
    Yamashita H, Alves M, Nishiguchi C, Moscatiello R, Moscatiello V, Lima A, Moscatiello RAA (2005) Análise por tomografia computadorizada do enxerto autógeno na cirurgia de “Sinus Lift”. Radiol Bras 38:25–31CrossRefGoogle Scholar
  36. 36.
    Shanbhag S, Shanbhag V, Stavropoulos A (2014) Volume changes of maxillary sinus augmentations over time: a systematic review. Int J Oral Maxillofac Implants 29:881–892.  https://doi.org/10.11607/jomi.3472 CrossRefGoogle Scholar
  37. 37.
    Mertens C, Meyer-Bäumer A, Kappel H, Hoffmann J, Steveling HG (2012) Use of 8-mm and 9-mm implants in atrophic alveolar ridges: 10-year results. Int J Oral Maxillofac Implants 27:1501–1508Google Scholar
  38. 38.
    Taschieri S, Testori T, Corbella S et al (2015) Platelet-rich plasma and deproteinized bovine bone matrix in maxillary sinus lift surgery: a split-mouth histomorphometric evaluation. Implant Dent.  https://doi.org/10.1097/ID.0000000000000293
  39. 39.
    Moraschini V, Uzeda MG, Sartoretto SC, Calasans-Maia (2017) Maxillary sinus floor elevation with simultaneous implant placement without grafting materials: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 46(5):636-647.  https://doi.org/10.1016/j.ijom.2017.01.021
  40. 40.
    Mazor Z, Horowitz RA, Del Corso M et al (2009) Sinus floor augmentation with simultaneous implant placement using Choukroun’s platelet-rich fibrin as the sole grafting material: a radiologic and histologic study at 6 months. J Periodontol 80:2056–2064.  https://doi.org/10.1902/jop.2009.090252 CrossRefGoogle Scholar
  41. 41.
    Ali S, Bakry SA, Abd-Elhakam H (2015) Platelet-rich fibrin in maxillary sinus augmentation: a systematic review. J Oral Implantol 41:746–753.  https://doi.org/10.1563/AAID-JOI-D-14-00167 CrossRefGoogle Scholar
  42. 42.
    Johansson B, Grepe A, Wannfors K, Åberg P, Hirsch JM (2001) Volumetry of simulated bone grafts in the edentulous maxilla by computed tomography: an experimental study. Dentomaxillofacial Radiol 30:153–156.  https://doi.org/10.1038/sj.dmfr.4600600 CrossRefGoogle Scholar
  43. 43.
    Gray CF, Redpath TW, Bainton R, Smith FW (2001) Magnetic resonance imaging assessment of a sinus lift operation using reoxidised cellulose (Surgicel) as graft material. Clin Oral Implants Res 12:526–530 doi: clr120514 [pii]CrossRefGoogle Scholar
  44. 44.
    Anitua E (1999) Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants 14:529–535Google Scholar
  45. 45.
    Pocaterra A, Caruso S, Bernardi S, Scagnoli L, Continenza MA, Gatto R (2016) Effectiveness of platelet-rich plasma as an adjunctive material to bone graft: a systematic review and meta-analysis of randomized controlled clinical trials. Int J Oral Maxillofac Surg 45:1027–1034.  https://doi.org/10.1016/j.ijom.2016.02.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Fernando de Almeida Barros Mourão
    • 1
    • 2
  • Emanuelle Stellet Lourenço
    • 1
  • Jhonathan Raphael Barros Nascimento
    • 1
  • Rafael Coutinho Mello Machado
    • 1
  • Alexandre Malta Rossi
    • 3
  • Paulo Emílio Corrêa Leite
    • 4
  • José Mauro Granjeiro
    • 5
    • 6
  • Gutemberg Gomes Alves
    • 2
  • Mônica Diuana Calasans-Maia
    • 7
    Email author
  1. 1.Graduate Program in DentistryFluminense Federal UniversityRio de JaneiroBrazil
  2. 2.Department of Molecular and Cell Biology, Institute of BiologyFluminense Federal UniversityRio de JaneiroBrazil
  3. 3.Biomaterials Laboratory, Brazilian Center for Physical StudiesRio de JaneiroBrazil
  4. 4.Laboratory of Ultrastructure and Cellular Biology Hertha Meyer, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroBrazil
  5. 5.Nacional Institute of Metrology, Quality and TechnologyRio de JaneiroBrazil
  6. 6.Dentistry SchoolFluminense Federal UniversityRio de JaneiroBrazil
  7. 7.Oral Surgery Department, Dentistry SchoolFluminense Federal UniversityRio de JaneiroBrazil

Personalised recommendations