Advertisement

Clinical Oral Investigations

, Volume 23, Issue 1, pp 303–313 | Cite as

Compromised alveolar bone cells in a patient with dentinogenesis imperfecta caused by DSPP mutation

  • Thantrira PorntaveetusEmail author
  • Nunthawan Nowwarote
  • Thanaphum Osathanon
  • Thanakorn Theerapanon
  • Prasit Pavasant
  • Lawan Boonprakong
  • Kittisak Sanon
  • Sirivimol Srisawasdi
  • Kanya Suphapeetiporn
  • Vorasuk Shotelersuk
Original Article

Abstract

Objectives

Dentin sialophosphoprotein (DSPP) plays an important role in the mineralization of both dentin and bones. The Dspp null mice developed periodontal diseases. Patients with DSPP mutations have dentinogenesis imperfecta (DGI), but very little is known about their bone characteristics. This study aims to characterize alveolar bone cells of a DGI patient with DSPP mutation.

Materials and methods

Pathogenic variants were identified by whole exome and sanger sequencing. Cells isolated from the alveolar bones of a DSPP patient were investigated for their characteristics including cell morphology, attachment, spreading, proliferation, colony formation, mineralization, and osteogenic differentiation.

Results

We identified a Thai family with three members affected with autosomal dominant DGI harboring a heterozygous pathogenic missense mutation, c.50C > T, p.P17L, in exon 2 of the DSPP gene. The patients’ phenotypes presented deteriorated opalescent teeth with periapical lesions, thickening of lamina dura, furcation involvement, alveolar bone loss, and bone exostoses. The alveolar bone cells isolated from DSPP patient exhibited compromised proliferation and colony formation. Scanning electron microscope revealed altered cellular morphology and spreading. The DSPP cells showed deviated mRNA levels of OCN, ALP, and COL1 but maintained in vitro mineralization ability compared to the control.

Conclusions

We demonstrate that the DSPP p.P17L mutant alveolar bone cells had compromised cell spreading, proliferation, colony formation, and osteogenic induction, suggesting abnormal bone characteristics in the patient with DGI caused by DSPP mutation.

Clinical relevance

DSPP mutation can induce the behavior alterations of alveolar bone cells.

Keywords

Bone biology Cell biology Diagnosis Genetics Osteoblasts 

Notes

Acknowledgements

We thank Pimsupa Kitsricharoenchai for providing the dental treatment for the proband.

Funding information

This study was supported by the Thailand Research Fund (TRF) and Office of Higher Education Commission (OHEC) Thailand (MRG6080001), the Chulalongkorn Academic Advancement Into Its 2nd Century Project. Nunthawan Nowwarote is supported by the Ratchadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

784_2018_2437_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)
784_2018_2437_Fig6_ESM.gif (265 kb)
ESM 2

(GIF 265 kb)

784_2018_2437_MOESM2_ESM.tif (15.7 mb)
High resolution image (TIF 16110 kb)

References

  1. 1.
    Suzuki S, Haruyama N, Nishimura F, Kulkarni AB (2012) Dentin sialophosphoprotein and dentin matrix protein-1: two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol 57:1165–1175.  https://doi.org/10.1016/j.archoralbio.2012.03.005 CrossRefGoogle Scholar
  2. 2.
    Barron MJ, McDonnell ST, Mackie I, Dixon MJ (2008) Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia. Orphanet J Rare Dis 3:31.  https://doi.org/10.1186/1750-1172-3-31 CrossRefGoogle Scholar
  3. 3.
    de La Dure-Molla M, Philippe Fournier B, Berdal A (2014) Isolated dentinogenesis imperfecta and dentin dysplasia: revision of the classification. Eur J Hum Genet 23:445–451.  https://doi.org/10.1038/ejhg.2014.159 CrossRefGoogle Scholar
  4. 4.
    Kim J-W, Nam S-H, Jang K-T, Lee S-H, Kim C-C, Hahn S-H, JC-C H, Simmer JP (2004) A novel splice acceptor mutation in the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet 115:248–254.  https://doi.org/10.1007/s00439-004-1143-5 Google Scholar
  5. 5.
    Prasad M, Butler WT, Qin C (2010) Dentin sialophosphoprotein in biomineralization. Connect Tissue Res 51:404–417.  https://doi.org/10.3109/03008200903329789 CrossRefGoogle Scholar
  6. 6.
    Qin C, Brunn JC, Cadena E, Ridall A, Tsujigiwa H, Nagatsuka H, Nagai N, Butler WT (2002) The expression of dentin sialophosphoprotein gene in bone. J Dent Res 81:392–394.  https://doi.org/10.1177/154405910208100607 CrossRefGoogle Scholar
  7. 7.
    Chen Y, Zhang Y, Ramachandran A, George A (2016) DSPP is essential for normal development of the dental-craniofacial complex. J Dent Res 95:302–310.  https://doi.org/10.1177/0022034515610768 CrossRefGoogle Scholar
  8. 8.
    Gibson MP, Zhu Q, Liu Q, D'Souza RN, Feng JQ, Qin C (2013) Loss of dentin sialophosphoprotein leads to periodontal diseases in mice. J Periodontal Res 48:221–227.  https://doi.org/10.1111/j.1600-0765.2012.01523.x CrossRefGoogle Scholar
  9. 9.
    Gibson MP, Jani P, Liu Y, Wang X, Lu Y, Feng JQ, Qin C (2013) Failure to process dentin sialophosphoprotein into fragments leads to periodontal defects in mice. Eur J Oral Sci 121:545–550.  https://doi.org/10.1111/eos.12088 CrossRefGoogle Scholar
  10. 10.
    Verdelis K, Ling Y, Sreenath T, Haruyama N, MacDougall M, van der Meulen MC, Lukashova L, Spevak L, Kulkarni AB, Boskey AL (2008) DSPP effects on in vivo bone mineralization. Bone 43:983–990.  https://doi.org/10.1016/j.bone.2008.08.110 CrossRefGoogle Scholar
  11. 11.
    Gu S, Liang J, Wang J, Liu B (2013) Histone acetylation regulates osteodifferentiation of human dental pulp stem cells via DSPP. Front Biosci (Landmark Ed) 18:1072–1079CrossRefGoogle Scholar
  12. 12.
    Wan C, Yuan G, Luo D, Zhang L, Lin H, Liu H, Chen L, Yang G, Chen S, Chen Z (2016) The dentin sialoprotein (DSP) domain regulates dental mesenchymal cell differentiation through a novel surface receptor. Sci Rep 6:29666.  https://doi.org/10.1038/srep29666 CrossRefGoogle Scholar
  13. 13.
    Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90:75–85.  https://doi.org/10.1002/bdrc.20173 CrossRefGoogle Scholar
  14. 14.
    Porntaveetus T, Srichomthong C, Suphapeetiporn K, Shotelersuk V (2017) Monoallelic FGFR3 and Biallelic ALPL mutations in a Thai girl with hypochondroplasia and hypophosphatasia. Am J Med Genet A 173:2747–2752.  https://doi.org/10.1002/ajmg.a.38370 CrossRefGoogle Scholar
  15. 15.
    Sukarawan W, Nowwarote N, Kerdpon P, Pavasant P, Osathanon T (2014) Effect of basic fibroblast growth factor on pluripotent marker expression and colony forming unit capacity of stem cells isolated from human exfoliated deciduous teeth. Odontology 102:160–166.  https://doi.org/10.1007/s10266-013-0124-3 CrossRefGoogle Scholar
  16. 16.
    Osathanon T, Sawangmake C, Ruangchainicom N, Wutikornwipak P, Kantukiti P, Nowwarote N, Pavasant P (2016) Surface properties and early murine pre-osteoblastic cell responses of phosphoric acid modified titanium surface. J Oral Biol Craniofac Res 6:2–9.  https://doi.org/10.1016/j.jobcr.2015.12.005 Google Scholar
  17. 17.
    Lumbikanonda N, Sammons R (2001) Bone cell attachment to dental implants of different surface characteristics. Int J Oral Maxillofac Implants 16:627–636Google Scholar
  18. 18.
    Osathanon T, Bespinyowong K, Arksornnukit M, Takahashi H, Pavasant P (2011) Human osteoblast-like cell spreading and proliferation on Ti-6Al-7Nb surfaces of varying roughness. J Oral Sci 53:23–30.  https://doi.org/10.2334/josnusd.53.23 CrossRefGoogle Scholar
  19. 19.
    Seo CH, Jeong H, Feng Y, Montagne K, Ushida T, Suzuki Y, Furukawa KS (2014) Micropit surfaces designed for accelerating osteogenic differentiation of murine mesenchymal stem cells via enhancing focal adhesion and actin polymerization. Biomaterials 35:2245–2252.  https://doi.org/10.1016/j.biomaterials.2013.11.089 CrossRefGoogle Scholar
  20. 20.
    Lee SK, Lee KE, Song SJ, Hyun HK, Lee SH, Kim JW (2013) A DSPP mutation causing dentinogenesis imperfecta and characterization of the mutational effect. Biomed Res Int 2013:948181–948187.  https://doi.org/10.1155/2013/948181 Google Scholar
  21. 21.
    Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L, Han B, Wang Z, Huang W, Liu J, Chen Z, Zhao G, Kong X (2001) Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 27:201–204.  https://doi.org/10.1038/84848 CrossRefGoogle Scholar
  22. 22.
    Jaha H, Husein D, Ohyama Y, Xu D, Suzuki S, Huang GT, Mochida Y (2016) N-Terminal dentin sialoprotein fragment induces type I collagen production and upregulates dentinogenesis marker expression in osteoblasts. Biochem Biophys Rep 6:190–196.  https://doi.org/10.1016/j.bbrep.2016.04.004 Google Scholar
  23. 23.
    Marolt D, Rode M, Kregar-Velikonja N, Jeras M, Knezevic M (2014) Primary human alveolar bone cells isolated from tissue samples acquired at periodontal surgeries exhibit sustained proliferation and retain osteogenic phenotype during in vitro expansion. PLoS One 9:e92969.  https://doi.org/10.1371/journal.pone.0092969 CrossRefGoogle Scholar
  24. 24.
    Kim J-W, Hu JC-C, Lee J-I, Moon S-K, Kim Y-J, Jang K-T, Lee S-H, Kim C-C, Hahn S-H, Simmer JP (2005) Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet 116:186–191.  https://doi.org/10.1007/s00439-004-1223-6 CrossRefGoogle Scholar
  25. 25.
    Fawzy El-Sayed KM, Boeckler J, Dorfer CE (2017) TLR expression profile of human alveolar bone proper-derived stem/progenitor cells and osteoblasts. J Craniomaxillofac Surg 45:2054–2060.  https://doi.org/10.1016/j.jcms.2017.09.007 CrossRefGoogle Scholar
  26. 26.
    Gibson MP, Zhu Q, Wang S, Liu Q, Liu Y, Wang X, Yuan B, Ruest LB, Feng JQ, D'Souza RN, Qin C, Lu Y (2013) The rescue of dentin matrix protein 1 (DMP1)-deficient tooth defects by the transgenic expression of dentin sialophosphoprotein (DSPP) indicates that DSPP is a downstream effector molecule of DMP1 in dentinogenesis. J Biol Chem 288:7204–7214.  https://doi.org/10.1074/jbc.M112.445775 CrossRefGoogle Scholar
  27. 27.
    Gibson MP, Jani P, Wang X, Lu Y, Qin C (2014) Overexpressing the NH(2)-terminal fragment of dentin sialophosphoprotein (DSPP) aggravates the periodontal defects in Dspp knockout mice. J Oral Biosci 56:143–148.  https://doi.org/10.1016/j.job.2014.06.003 CrossRefGoogle Scholar
  28. 28.
    Ozer A, Yuan G, Yang G, Wang F, Li W, Yang Y, Guo F, Gao Q, Shoff L, Chen Z, Gay IC, Donly KJ, MacDougall M, Chen S (2013) Domain of dentine sialoprotein mediates proliferation and differentiation of human periodontal ligament stem cells. PLoS One 8:e81655.  https://doi.org/10.1371/journal.pone.0081655 CrossRefGoogle Scholar
  29. 29.
    Jia J, Bian Z, Song Y (2015) Dspp mutations disrupt mineralization homeostasis during odontoblast differentiation. Am J Transl Res 7:2379–2396Google Scholar
  30. 30.
    Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679Google Scholar
  31. 31.
    Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM (2002) Tissue origins and interactions in the mammalian skull vault. Dev Biol 241:106–116.  https://doi.org/10.1006/dbio.2001.0487 CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Song Y, Ravindran S, Gao Q, Huang CC, Ramachandran A, Kulkarni A, George A (2014) DSPP contains an IRES element responsible for the translation of dentin phosphophoryn. J Dent Res 93:155–161.  https://doi.org/10.1177/0022034513516631 CrossRefGoogle Scholar
  33. 33.
    Schwartz MA (2009) The force is with us. Science 323:588–589.  https://doi.org/10.1126/science.1169414 CrossRefGoogle Scholar
  34. 34.
    Titushkin I, Cho M (2007) Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J 93:3693–3702.  https://doi.org/10.1529/biophysj.107.107797 CrossRefGoogle Scholar
  35. 35.
    Goncharenko AV, Malyuchenko NV, Moisenovich AM, Kotlyarova MS, Arkhipova AY, Kon'kov AS, Agapov II, Molochkov AV, Moisenovich MM, Kirpichnikov MP (2016) Changes in morphology of actin filaments and expression of alkaline phosphatase at 3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds. Dokl Biochem Biophys 470:368–370.  https://doi.org/10.1134/S1607672916050197 CrossRefGoogle Scholar
  36. 36.
    Rodriguez JP, Gonzalez M, Rios S, Cambiazo V (2004) Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem 93:721–731.  https://doi.org/10.1002/jcb.20234 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thantrira Porntaveetus
    • 1
    • 2
    Email author
  • Nunthawan Nowwarote
    • 3
  • Thanaphum Osathanon
    • 1
    • 3
  • Thanakorn Theerapanon
    • 1
  • Prasit Pavasant
    • 3
  • Lawan Boonprakong
    • 4
  • Kittisak Sanon
    • 5
  • Sirivimol Srisawasdi
    • 5
  • Kanya Suphapeetiporn
    • 6
    • 7
  • Vorasuk Shotelersuk
    • 6
    • 7
  1. 1.Craniofacial Genetics and Stem Cells Research Group, Faculty of DentistryChulalongkorn UniversityBangkokThailand
  2. 2.Department of Physiology, Faculty of DentistryChulalongkorn UniversityBangkokThailand
  3. 3.Excellence Center in Regenerative Dentistry and Department of Anatomy, Faculty of DentistryChulalongkorn UniversityBangkokThailand
  4. 4.Oral Biology Research Center, Faculty of DentistryChulalongkorn UniversityBangkokThailand
  5. 5.Department of Operative Dentistry, Faculty of DentistryChulalongkorn UniversityBangkokThailand
  6. 6.Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  7. 7.Excellence Center for Medical GeneticsKing Chulalongkorn Memorial Hospital, the Thai Red Cross SocietyBangkokThailand

Personalised recommendations