Advertisement

Clinical Oral Investigations

, Volume 22, Issue 8, pp 2933–2941 | Cite as

Damage-regulated autophagy modulator 1 in oral inflammation and infection

  • Svenja MemmertEmail author
  • A. V. B. Nogueira
  • A. Damanaki
  • M. Nokhbehsaim
  • S. Eick
  • T. Divnic-Resnik
  • A. Spahr
  • B. Rath-Deschner
  • A. Till
  • W. Götz
  • J. A. Cirelli
  • A. Jäger
  • J. Deschner
Original Article
  • 304 Downloads

Abstract

Objectives

Damage-regulated autophagy modulator (DRAM) 1 is a p53 target gene with possible involvement in oral inflammation and infection. This study sought to examine the presence and regulation of DRAM1 in periodontal diseases.

Material and methods

In vitro, human periodontal ligament fibroblasts were exposed to interleukin (IL)-1β and Fusobacterium nucleatum for up to 2 days. The DRAM1 synthesis and its regulation were analyzed by real-time PCR, immunocytochemistry, and ELISA. Expressions of other autophagy-associated genes were also studied by real-time PCR. In vivo, synthesis of DRAM1 in gingival biopsies from rats and patients with and without periodontal disease was examined by real-time PCR and immunohistochemistry. For statistics, ANOVA and post-hoc tests were applied (p < 0.05).

Results

In vitro, DRAM1 was significantly upregulated by IL-1β and F. nucleatum over 2 days and a wide range of concentrations. Additionally, increased DRAM1 protein levels in response to both stimulants were observed. Autophagy-associated genes ATG3, BAK1, HDAC6, and IRGM were also upregulated under inflammatory or infectious conditions. In vivo, the DRAM1 gene expression was significantly enhanced in rat gingival biopsies with induced periodontitis as compared to control. Significantly increased DRAM1 levels were also detected in human gingival biopsies from sites of periodontitis as compared to healthy sites.

Conclusion

Our data provide novel evidence that DRAM1 is increased under inflammatory and infectious conditions in periodontal cells and tissues, suggesting a pivotal role of DRAM1 in oral inflammation and infection.

Clinical relevance

DRAM1 might be a promising target in future diagnostic and treatment strategies for periodontitis.

Keywords

Damage-regulated autophagy modulator Autophagy Fusobacterium nucleatum Interleukin-1β Periodontal ligament Periodontitis 

Notes

Acknowledgements

The authors would like to thank Ms. Ramona Menden, Ms. Silke van Dyck, Ms. Inka Bay and Prof. Heiko Spallek for their valuable support.

Funding

This study was supported by the Medical Faculty of the University of Bonn, the University of Sydney, the German Orthodontic Society (DGKFO), the German Research Foundation (DFG, ME 4798/1–1) and by the German Federal Ministry of Education and Research (grant 01EK1603A-Neuro2D3, to AT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Approval of the Ethics Committee of the University of Bonn was obtained (#117/15 #043/11) and of the Ethical Committee on Animal Experimentation (protocol number: 23/2012) from the School of Dentistry at Araraquara. Animal experiments were carried out following the recommendations of the ARRIVE guidelines.

Informed consent

All donors of the PDL cells or their parents gave written informed consent.

References

  1. 1.
    Slots J (2017) Periodontitis: facts, fallacies and the future. Periodontol 2000 75:7–23.  https://doi.org/10.1111/prd.12221 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Holt SC, Ebersole JL (2005) Porphyromonas gingivalis, treponema denticola, and tannerella forsythia: the ‘red complex’, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 38:72–122CrossRefGoogle Scholar
  3. 3.
    Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–1820CrossRefGoogle Scholar
  4. 4.
    Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94.  https://doi.org/10.1038/nrm3735 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293.  https://doi.org/10.1016/j.molcel.2010.09.023 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    King JS, Veltman DM, Insall RH (2011) The induction of autophagy by mechanical stress. Autophagy 7:1490–1499CrossRefGoogle Scholar
  7. 7.
    Bhattacharya A, Eissa NT (2015) Autophagy as a stress response pathway in the immune system. Int Rev Immunol 34:382–402.  https://doi.org/10.3109/08830185.2014.999156 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lapaquette P, Guzzo J, Bretillon L, Bringer MA (2015) Cellular and molecular connections between autophagy and inflammation. Mediat Inflamm 2015:398483.  https://doi.org/10.1155/2015/398483 CrossRefGoogle Scholar
  9. 9.
    Quan W, Lim YM, Lee MS (2012) Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Exp Mol Med 44:81–88.  https://doi.org/10.3858/emm.2012.44.2.030 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bullon P, Cordero MD, Quiles JL, Ramirez-Tortosa Mdel C, Gonzalez-Alonso A, Alfonsi S, García-Marín R, de Miguel M, Battino M (2012) Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Med 10:122.  https://doi.org/10.1186/1741-7015-10-122 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Huang WP, Klionsky DJ (2002) Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27:409–420CrossRefGoogle Scholar
  12. 12.
    Crighton D, Wilkinson S, Ryan KM (2007) DRAM links autophagy to p53 and programmed cell death. Autophagy 3:72–74CrossRefGoogle Scholar
  13. 13.
    Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72:4721–4757.  https://doi.org/10.1007/s00018-015-2034-8 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134CrossRefGoogle Scholar
  15. 15.
    Zhang XD, Qi L, Wu JC, Qin ZH (2013) DRAM1 regulates autophagy flux through lysosomes. PLoS One 8:e63245.  https://doi.org/10.1371/journal.pone.0063245 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Guan JJ, Zhang XD, Sun W, Qi L, Wu JC, Qin ZH (2015) DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis 6:e1624.  https://doi.org/10.1038/cddis.2014.546 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459.  https://doi.org/10.1016/j.bbamcr.2013.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mariotti A, Cochran DL (1990) Characterization of fibroblasts derived from human periodontal ligament and gingiva. J Periodontol 61:103–111CrossRefGoogle Scholar
  19. 19.
    Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:615–621CrossRefGoogle Scholar
  20. 20.
    Nokhbehsaim M, Winter J, Rath B, Jäger A, Jepsen S, Deschner J (2011) Effects of enamel matrix derivative on periodontal wound healing in an inflammatory environment in vitro. J Clin Periodontol 38:479–490.  https://doi.org/10.1111/j.1600-051X.2010.01696.x CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nogueira AVB, Nokhbehsaim M, Eick S, Bourauel C, Jäger A, Jepsen S, Cirelli JA, Deschner J (2013) Regulation of visfatin by microbial and biomechanical signals in PDL cells. Clin Oral Investig 18:171–178.  https://doi.org/10.1007/s00784-013-0935-1 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nokhbehsaim M, Eick S, Nogueira AVB, Hoffmann P, Herms S, Fröhlich H, Jepsen S, Jäger A, Cirelli JA, Deschner J (2013) Stimulation of MMP-1 and CCL2 by NAMPT in PDL cells. Mediat Inflamm 2013:437123.  https://doi.org/10.1155/2013/437123 CrossRefGoogle Scholar
  23. 23.
    Damanaki A, Nokhbehsaim M, Eick S, Götz W, Winter J, Wahl G, Jäger A, Jepsen S, Deschner J (2014) Regulation of NAMPT in human gingival fibroblasts and biopsies. Mediat Inflamm 2014:912821.  https://doi.org/10.1155/2014/912821 CrossRefGoogle Scholar
  24. 24.
    Nokhbehsaim M, Keser S, Nogueira AV, Cirelli JA, Jepsen S, Jäger A, Eick S, Deschner J (2014) Beneficial effects of adiponectin on periodontal ligament cells under normal and regenerative conditions. J Diabetes Res 2014:796565.  https://doi.org/10.1155/2014/796565 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nokhbehsaim M, Keser S, Nogueira AV, Jäger A, Jepsen S, Cirelli JA, Bourauel C, Eick S, Deschner J (2014) Leptin effects on the regenerative capacity of human periodontal cells. Int J Endocrinol 2014:180304–180313.  https://doi.org/10.1155/2014/180304 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Memmert S, Damanaki A, Nogueira AVB, Eick S, Nokhbehsaim M, Papadopoulou AK, Till A, Rath B, Jepsen S, Götz W, Piperi C, Basdra EK, Cirelli JA, Jäger A, Deschner J (2017) Role of Cathepsin S in periodontal inflammation and infection. Mediat Inflamm 2017:4786170.  https://doi.org/10.1155/2017/4786170 CrossRefGoogle Scholar
  27. 27.
    Nogueira AVB, de Molon RS, Nokhbehsaim M, Deschner J, Cirelli JA (2017) Contribution of biomechanical forces to inflammation-induced bone resorption. J Clin Periodontol 44:31–41.  https://doi.org/10.1111/jcpe.12636 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Armitage GC (2004) Periodontal diagnoses and classification of periodontal diseases. Periodontol 2000 34:9–21CrossRefGoogle Scholar
  29. 29.
    Memmert S, Gölz L, Pütz P, Jäger A, Deschner J, Appel T, Baumgarten G, Rath-Deschner B, Frede S, Götz W (2015) Regulation of p53 under hypoxic and inflammatory conditions in periodontium. Clin Oral Investig 20:1781–1789.  https://doi.org/10.1007/s00784-015-1679-x CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Graves DT, Cochran D (2003) The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol 74:391–401CrossRefGoogle Scholar
  31. 31.
    Noguchi K, Ishikawa I (2007) The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontol 2000 43:85–101CrossRefGoogle Scholar
  32. 32.
    Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ (2007) Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. J Dent Res 86:306–319CrossRefGoogle Scholar
  33. 33.
    Bartold PM, Cantley MD, Haynes DR (2010) Mechanisms and control of pathologic bone loss in periodontitis. Periodontol 2000 53:55–69.  https://doi.org/10.1111/j.1600-0757.2010.00347.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saito A, Inagaki S, Kimizuka R, Okuda K, Hosaka Y, Nakagawa T, Ishihara K (2008) Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol Med Microbiol 54:349–355.  https://doi.org/10.1111/j.1574-695X.2008.00481.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    He J, Huang W, Pan Z, Cui H, Qi G, Zhou X, Chen H (2012) Quantitative analysis of microbiota in saliva, supragingival, and subgingival plaque of Chinese adults with chronic periodontitis. Clin Oral Investig 16:1579–1588.  https://doi.org/10.1007/s00784-011-0654-4 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Signat B, Roques C, Poulet P, Duffaut D (2011) Fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol 13:25–36Google Scholar
  37. 37.
    Hajishengallis G (2015) Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 15:30–44.  https://doi.org/10.1038/nri3785 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hönig J, Rordorf-Adam C, Siegmund C, Wiedemann W, Erard F (1989) Increased interleukin-1 beta (IL-1beta) concentration in gingival tissue from periodontitis patients. J Periodontal Res 24:362–367CrossRefGoogle Scholar
  39. 39.
    Tsai CC, Ho YP, Chen CC (1995) Levels of interleukin-1β and interleukin-8 in gingival crevicular fluids in adult periodontitis. J Periodontol 66:852–859CrossRefGoogle Scholar
  40. 40.
    Hou LT, Liu CM, Rossomando EF (1995) Crevicular interleukin-1β in moderate and severe periodontitis patients and the effect of phase I periodontal treatment. J Clin Periodontol 22:162–167CrossRefGoogle Scholar
  41. 41.
    Lerner UH (1991) Bradykinin synergistically potentiates interleukin-1 induced bone resorption and prostanoid biosynthesis in neonatal mouse calvarial bones. Biochem Biophys Res Commun 175:775–783CrossRefGoogle Scholar
  42. 42.
    Linkhart TA, MacCharles DC (1992) Interleukin-1 stimulates release of insulin-like growth factor-I from neonatal mouse calvaria by a prostaglandin synthesis-dependent mechanism. Endocrinology 131:2297–2305CrossRefGoogle Scholar
  43. 43.
    Stashenko P, Dewhirst FE, Rooney ML, Desjardins LA, Heeley DJ (1987) Interleukin-1β is a potent inhibitor of bone formation in vitro. J Bone Miner Res 2:559–565CrossRefGoogle Scholar
  44. 44.
    Ohshima M, Otsuka K, Suzuki K (1994) Interleukin-1 beta stimulates collagenase production by cultured human periodontal ligament fibroblasts. J Periodontal Res 29:421–429CrossRefGoogle Scholar
  45. 45.
    Deschner J, Arnold B, Kage A, Zimmermann B, Kanitz V, Bernimoulin JP (2000) Suppression of interleukin-10 release from human periodontal ligament cells by interleukin-1β in vitro. Arch Oral Biol 45:179–183CrossRefGoogle Scholar
  46. 46.
    Van der Vaart M, Korbee CJ, Lamers GE, Tengeler AC, Hosseini R, Haks MC, Ottenhoff TH, Spaink HP, Meijer AH (2014) The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense [corrected]. Cell Host Microbe 15:753–767.  https://doi.org/10.1016/j.chom.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    An Y, Liu W, Xue P, Zhang Y, Wang Q, Jin Y (2016) Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. J Clin Periodontol 43:618–625.  https://doi.org/10.1111/jcpe.12549 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Svenja Memmert
    • 1
    • 2
    Email author return OK on get
  • A. V. B. Nogueira
    • 3
  • A. Damanaki
    • 1
  • M. Nokhbehsaim
    • 1
  • S. Eick
    • 4
  • T. Divnic-Resnik
    • 5
  • A. Spahr
    • 5
  • B. Rath-Deschner
    • 2
  • A. Till
    • 6
  • W. Götz
    • 2
  • J. A. Cirelli
    • 3
  • A. Jäger
    • 2
  • J. Deschner
    • 1
    • 7
  1. 1.Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany
  2. 2.Department of Orthodontics, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany
  3. 3.Department of Diagnosis and Surgery, School of Dentistry at AraraquaraSao Paulo State University, UNESPAraraquaraBrazil
  4. 4.Department of Periodontology, Laboratory for Oral Microbiology, School of Dental MedicineUniversity of BernBernSwitzerland
  5. 5.Department/Discipline of Periodontics, Faculty of DentistryThe University of SydneySydneyAustralia
  6. 6.Institute of Reconstructive Neurobiology, Life & Brain CenterUniversity of BonnBonnGermany
  7. 7.Noel Martin Visiting Chair, Faculty of DentistryUniversity of SydneySydneyAustralia

Personalised recommendations