Clinical Oral Investigations

, Volume 22, Issue 2, pp 655–670 | Cite as

Effectiveness of ultrasonically activated irrigation on root canal disinfection: a systematic review of in vitro studies

  • Venkateshbabu Nagendrababu
  • Jayakumar Jayaraman
  • Anand Suresh
  • Senthilnayagam Kalyanasundaram
  • Prasanna Neelakantan



Reduction of microbial load from the root canal systems is a pre-requisite for healing of lesions of endodontic origin. Such microbial reduction is influenced by the method of irrigant delivery and activation. The aim of this systematic review was to compare the effect of ultrasonically activated irrigation (UAI) with other irrigation techniques on the reduction of microorganisms during root canal disinfection.

Materials and methods

The research question was created based on the PICO strategy. Two reviewers independently performed a comprehensive literature search in electronic databases. Following application of inclusion and exclusion criteria to the selected articles, a systematic data extraction sheet was constructed. The selected articles were assessed using methodological quality scoring protocol. The risk of bias in selected studies was critically assessed by two reviewers.


A total of 15 articles were included for the systematic review. The included studies were heterogeneous in study design; hence, meta-analysis was not performed. The overall risk of bias for the selected studies was moderate. Overall, UAI showed superior reduction of microbial counts, resulting in better disinfection compared to other irrigation systems chosen for comparison in this review.


The use of UAI can bring about superior microbial reduction within the root canal system compared to other irrigant activation techniques.

Clinical relevance

Activation of irrigants with ultrasonic brings about significant bacterial reduction from the root canal systems compared to other methods of irrigant activation and conventional syringe irrigation. This might help in improving the outcome of root canal treatment.


Antimicrobial Colony forming units Disinfection Ultrasonically activated irrigation Root canal 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Supplementary material

784_2018_2345_MOESM1_ESM.doc (42 kb)
ESM 1 (DOC 42 kb)


  1. 1.
    Friedman S, Mor C (2004) The success of endodontic therapy--healing and functionality. J Calif Dent Assoc 32(6):493–503PubMedGoogle Scholar
  2. 2.
    Moreira MS, Anuar ASN, Tedesco TK, Dos Santos M, Morimoto S (2017) Endodontic treatment in single and multiple visits: an overview of systematic reviews. J Endod 43(6):864–870. CrossRefPubMedGoogle Scholar
  3. 3.
    Estrela C, Holland R, Estrela CR, Alencar AH, Sousa-Neto MD, Pécora JD (2014) Characterization of successful root canal treatment. Braz Dent J 25(1):3–11. CrossRefPubMedGoogle Scholar
  4. 4.
    Estrela C, Silva JA, Decurcio DA, Alencar AH, Estrela CR, Faitaroni LA, Batista AC (2014) Monitoring nonsurgical and surgical root canal treatment of teeth with primary and secondary infections. Braz Dent J 25(6):494–501. CrossRefPubMedGoogle Scholar
  5. 5.
    Ricucci D, Siqueira JF Jr (2010) Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod 36(8):1277–1288. CrossRefPubMedGoogle Scholar
  6. 6.
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138. CrossRefPubMedGoogle Scholar
  7. 7.
    Nair PN, Henry S, Cano V, Vera J (2005) Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. J Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99(2):231–252. CrossRefGoogle Scholar
  8. 8.
    Vieira AR, Siqueira JF Jr, Ricucci D, Lopes WS (2012) Dentinal tubule infection as the cause of recurrent disease and late endodontic treatment failure: a case report. J Endod 38:250–254CrossRefPubMedGoogle Scholar
  9. 9.
    Siqueira JF Jr, Rôças IN (2008) Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 34:1249–1254CrossRefPubMedGoogle Scholar
  10. 10.
    Paiva SS, Siqueira JF Jr, Rôças IN, Carmo FL, Leite DC, Ferreira DC, Rachid CT, Rosado AS (2013) Clinical antimicrobial efficacy of NiTi rotary instrumentation with NaOCl irrigation, final rinse with chlorhexidine and interappointment medication: a molecular study. Int Endod J 46(3):225–233. CrossRefPubMedGoogle Scholar
  11. 11.
    Shenoi PR, Morey ES, Makade CS, Gunwal MK, Khode RT, Wanmali SS (2016) In vitro evaluation of the antimicrobial efficacy of chitosan and other endodontic irrigants against Enterococcus faecalis. Gen Dent 64(5):60–63PubMedGoogle Scholar
  12. 12.
    Zehnder M (2006) Root canal irrigants. J Endod 32(5):389–398. CrossRefPubMedGoogle Scholar
  13. 13.
    Haapasalo M, Shen Y, Qian W, Gao Y (2010) Irrigation in endodontics. Dent Clin N Am 54(2):291–312. CrossRefPubMedGoogle Scholar
  14. 14.
    Tay FR, Gu LS, Schoeffel GJ, Wimmer C, Susin L, Zhang K, Arun SN, Kim J, Looney SW, Pashley DH (2010) The effect of vapor lock on root canal debridement using a side-vented needle for positive- pressure irrigant delivery. J Endod 36(4):745–750. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nielsen BA, Baumgartner CJ (2007) Comparison of the EndoVac system to needle irrigation of root canals. J Endod 33(5):611–615. CrossRefPubMedGoogle Scholar
  16. 16.
    Halford A, Ohl CD, Azarpazhooh A, Basrani B, Friedman S, Kishen A (2012) Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro. J Endod 38(11):1530–1534. CrossRefPubMedGoogle Scholar
  17. 17.
    Bago I, Plecko V, Gabric Panduric D, Schauperl Z, Baraba A, Anic I (2013) Antimicrobial efficacy of a high-power diode laser, photo-activated disinfection, conventional and sonic activated irrigation during root canal treatment. Int Endod J 46(4):339–347. CrossRefPubMedGoogle Scholar
  18. 18.
    Guerreiro-Tanomaru JM, Chávez-Andrade GM, De Faria-Júnior NB, Watanabe E, Tanomaru-Filho M (2015) Effect of passive ultrasonic irrigation on Enterococcus faecalis from root canals: an ex vivo study. Braz Dent J 26(4):342–346. CrossRefPubMedGoogle Scholar
  19. 19.
    Bhardwaj A, Velmurugan N, Sumitha, Ballal S (2013) Efficacy of passive ultrasonic irrigation with natural irrigants (Morinda citrifolia juice, Aloe Vera and Propolis) in comparison with 1% sodium hypochlorite for removal of E. faecalis biofilm: an in vitro study. Indian J Dent Res 24:35–41CrossRefPubMedGoogle Scholar
  20. 20.
    Neelakantan P, Cheng CQ, Mohanraj R, Sriraman P, Subbarao C, Sharma S (2015) Antibiofilm activity of three irrigation protocols activated by ultrasonic, diode laser or Er:YAG laser in vitro. Int Endod J 48(6):602–610. CrossRefPubMedGoogle Scholar
  21. 21.
    Xhevdet A, Stubljar D, Kriznar I, Jukic T, Skvarc M, Veranic P, Ihan A (2014) The disinfecting efficacy of root canals with laser photodynamic therapy. J Lasers Med Sci 5:19–26PubMedPubMedCentralGoogle Scholar
  22. 22.
    Tennert C, Drews AM, Walther V, Altenburger MJ, Karygianni L, Wrbas KT, Hellwig E, Al-Ahmad A (2015) Ultrasonic activation and chemical modification of photosensitizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates. Photodiagn Photodyn Ther 12(2):244–251. CrossRefGoogle Scholar
  23. 23.
    Neelakantan P, Cheng CQ, Ravichandran V, Mao T, Sriraman P, Sridharan S, Subbarao C, Sharma S, Kishen A (2015) Photoactivation of curcumin and sodium hypochlorite to enhance antibiofilm efficacy in root canal dentin. Photodiagn Photodyn Ther 12(1):108–114. CrossRefGoogle Scholar
  24. 24.
    Keir DM, Senia ES, Montgomery S (1990) Effectiveness of a brush in removing postinstrumentation canal debris. J Endod 16(7):323–327. CrossRefPubMedGoogle Scholar
  25. 25.
    Roggendorf MJ, Kraus F, Lohbauer U, Frankenberger R, Petschelt A, Ebert J (2015) Apical debris removal of CanalBrushes with different tip modifications. Quintessence Int 46(10):853–860. PubMedGoogle Scholar
  26. 26.
    Gu LS, Kim JR, Ling J, Choi KK, Pashley DH, Tay FR (2009) Review of contemporary irrigant agitation techniques and devices. J Endod 35(6):791–804. CrossRefPubMedGoogle Scholar
  27. 27.
    Lee SJ, Wu MK, Wesselink PR (2004) The efficacy of ultrasonic irrigation to remove artificially placed dentine debris from different-sized simulated plastic root canals. Int Endod J 37(9):607–612. CrossRefPubMedGoogle Scholar
  28. 28.
    Rodig T, Sedghi M, Konietschke F, Lange K, Ziebolz D, Hulsmann M (2010) Efficacy of syringe irrigation, RinsEndo and passive ultrasonic irrigation in removing debris from irregularities in root canals with different apical sizes. Int Endod J 43(7):581–589. CrossRefPubMedGoogle Scholar
  29. 29.
    Guo X, Miao H, Li L, Zhang S, Zhou D, Lu Y, Wu L (2014) Efficacy of four different irrigation techniques combined with 60 °C 3% sodium hypochlorite and 17% EDTA in smear layer removal. BMC Oral Health 14:114. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Niazi SA, Clark D, Do T, Gilbert SC, Foschi F, Mannocci F, Beighton D (2014) The effectiveness of enzymic irrigation in removing a nutrient-stressed endodontic multispecies biofilm. Int Endod J 47(8):756–768. CrossRefPubMedGoogle Scholar
  31. 31.
    Rico-Romano C, Zubizarreta-Macho Á, Baquero-Artigao MR, Mena-Álvarez J (2016) An analysis in vivo of intracanal bacterial load before and after chemo-mechanical preparation: a comparative analysis of two irrigants and two activation techniques. J Clin Exp Dent 8(1):e9–e13. PubMedPubMedCentralGoogle Scholar
  32. 32.
    Seet AN, Zilm PS, Gully NJ, Cathro PR (2012) Qualitative comparison of sonic or laser energisation of 4% sodium hypochlorite on an Enterococcus faecalis biofilm grown in vitro. Aust Endod J 38(3):100–106. CrossRefPubMedGoogle Scholar
  33. 33.
    Weller RN, Brady JM, Bernier WE (1980) Efficacy of ultrasonic cleaning. J Endod 6(9):740–743. CrossRefPubMedGoogle Scholar
  34. 34.
    Roy RA, Ahmad M, Crum LA (1994) Physical mechanisms, governing the hydrodynamic response of an oscillating ultrasonic file. Int Endod J 27:197–207CrossRefPubMedGoogle Scholar
  35. 35.
    Ahmad M, Pitt Ford TR, Crum LA, Walton AJ (1988) Ultrasonic debridement of root canals: acoustic cavitation and its relevance. J Endod 14(10):486–493. CrossRefPubMedGoogle Scholar
  36. 36.
    Van der Sluis LW, Versluis M, Wu MK, Wesselink PR (2007) Passive ultrasonic irrigation of the root canal: a review of the literature. Int Endod J 40(6):415–426. CrossRefPubMedGoogle Scholar
  37. 37.
    Curtis TO, Sedgley CM (2012) Comparison of a continuous ultrasonic irrigation device and conventional needle irrigation in the removal of root canal debris. J Endod 38(9):1261–1264. CrossRefPubMedGoogle Scholar
  38. 38.
    Macedo RG, Verhaagen B, Wesselink PR, Versluis M, van der Sluis LWM (2014) Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation. Int Endod J 47:147–154CrossRefPubMedGoogle Scholar
  39. 39.
    Spoleti P, Siragusa M, Spoleti MJ (2003) Bacteriological evaluation of passive ultrasonic activation. J Endod 29(1):12–14. CrossRefPubMedGoogle Scholar
  40. 40.
    Blank-Gonçalves LM, Nabeshima CK, Martins GH, Machado ME (2011) Qualitative analysis of the removal of the smear layer in the apical third of curved roots: conventional irrigation versus activation systems. J Endod 37(9):1268–1271. CrossRefPubMedGoogle Scholar
  41. 41.
    Lee SJ, Wu MK, Wesselink PR (2004) The effectiveness of syringe irrigation and ultrasonics to remove debris from simulated irregularities within prepared root canal walls. Int Endod J 37(10):672–678. CrossRefPubMedGoogle Scholar
  42. 42.
    Huque J, Kota K, Yamaga M, Iwaku M, Hoshino E (1998) Bacterial eradication from root dentine by ultrasonic irrigation with sodium hypochlorite. Int Endod J 31:242–250CrossRefPubMedGoogle Scholar
  43. 43.
    Gulabivala K, Stock CJ, Lewsey JD, Ghori S, Ng YL, Spratt DA (2004) Effectiveness of electrochemically activated water as an irrigant in an infected tooth model. Int Endod J 37(9):624–631. CrossRefPubMedGoogle Scholar
  44. 44.
    Tardivo D, Pommel L, La Scola B, About I, Camps J (2010) Antibacterial efficiency of passive ultrasonic versus sonic irrigation. Ultrasonic root canal irrigation. Odontostomatol Trop 33(129):29–35PubMedGoogle Scholar
  45. 45.
    Bhuva B, Patel S, Wilson R, Niazi S, Beighton D, Mannocci F (2010) The effectiveness of passive ultrasonic irrigation on intra radicular enterococcus faecalis biofilms in extracted single-rooted human teeth. Int Endod J 43(3):241–250. CrossRefPubMedGoogle Scholar
  46. 46.
    Siqueira JF Jr., Machado AG, Silveira RM, Lopes HP, De Uzeda M (1997) Evaluation of the effectiveness of sodium hypochlorite used with three irrigation methods in the elimination of Enterococcus faecalis from the root canal: in vitro. Int Endod J 30:279–282, 4,
  47. 47.
  48. 48.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174. CrossRefPubMedGoogle Scholar
  49. 49.
    Ibi H, Hayashi M, Yoshino F, Tamura M, Yoshida A, Kobayashi Y, Shimizu K, Lee MC, Imai K, Ogiso B (2017) Bactericidal effect of hydroxyl radicals generated by the sonolysis and photolysis of hydrogen peroxide for endodontic applications. Microb Pathog 103:65–70. CrossRefPubMedGoogle Scholar
  50. 50.
    Kobayashi Y, Hayashi M, Yoshino F, Tamura M, Yoshida A, Ibi H, Lee MC, Ochiai K, Ogiso B (2014) Passive ultrasonic irrigation in the presence of a low concentration of hydrogen peroxide enhances hydroxyl radical generation and bactericidal effect against Enterococcus faecalis. J Oral Sci 56:35–39CrossRefPubMedGoogle Scholar
  51. 51.
    Martin H (1976) Ultrasonic disinfection of the root canal. Oral Surg Oral Med Oral Pathol 42(1):92–99. CrossRefPubMedGoogle Scholar
  52. 52.
    Pladisai P, Ampornaramveth RS, Chivatxaranukul P (2016) Effectiveness of different disinfection protocols on the reduction of bacteria in Enterococcus faecalis biofilm in teeth with large root canals. J Endod 42(3):460–464. CrossRefPubMedGoogle Scholar
  53. 53.
    Neuhaus KW, Liebi M, Stauffacher S, Eick S, Lussi A (2016) Antibacterial efficacy of a new sonic irrigation device for root canal disinfection. J Endod 42:1799–1803CrossRefPubMedGoogle Scholar
  54. 54.
    Toljan I, Bago I, Jurič AI (2016) Eradication of intracanal Enterococcus faecalis biofilm by passive ultrasonic irrigation and RinsEndo system. Acta Stomatol Croat 50:14–22CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hubbezoglu I, Zan R, Tunc T, Sumer Z (2014) Antibacterial efficacy of aqueous ozone in root canals infected by Enterococcus faecalis. Jundishapur J Microbiol 7:e11411CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ghinzelli GC, Souza MA, Cecchin D, Farina AP, de Figueiredo JA (2014) Influence of ultrasonic activation on photodynamic therapy over root canal system infected with enterococcus faecalis : an in vitro study. Photodiagn Photodyn Ther 11(4):472–478. CrossRefGoogle Scholar
  57. 57.
    Cachovan G, Schiffner U, Altenhof S, Guentsch A, Pfister W, Eick S (2013) Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro. J Endod 39(9):1171–1175. CrossRefPubMedGoogle Scholar
  58. 58.
    Case PD, Bird PS, Kahler WA, George R, Walsh LJ (2012) Treatment of root canal biofilms of Enterococcus faecalis with ozone gas and passive ultrasound activation. J Endod 38(4):523–526. CrossRefPubMedGoogle Scholar
  59. 59.
    Alves FR, Almeida BM, Neves MA, Moreno JO, Rôças IN, Siqueira JF Jr (2011) Disinfecting oval-shaped root canals: effectiveness of different supplementary approaches. J Endod 37(4):496–501. CrossRefPubMedGoogle Scholar
  60. 60.
    Paqué F, Boessler C, Zehnder M (2011) Accumulated hard tissue debris levels in mesial roots of mandibular molars after sequential irrigation steps. Int Endod J 44:148–153CrossRefPubMedGoogle Scholar
  61. 61.
    Shuping GB, Ørstavik D, Sigurdsson A, Trope M (2000) Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. J Endod 26(12):751–755. CrossRefPubMedGoogle Scholar
  62. 62.
    Young GR, Parashos P, Messer HH (2007) The principles of techniques for cleaning root canals. Aust Dent J 52(1 Suppl):S52–S63. CrossRefPubMedGoogle Scholar
  63. 63.
    Neelakantan P, Devaraj S, Jagannathan N (2016) Histologic assessment of debridement of the root canal isthmus of mandibular molars by irrigant activation techniques ex vivo. J Endod 42:1268–1272CrossRefPubMedGoogle Scholar
  64. 64.
    Peters OA, Schönenberger K, Laib A (2001) Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J 34:221–230CrossRefPubMedGoogle Scholar
  65. 65.
    Siqueira JF Jr, Pérez AR, Marceliano-Alves MF, Provenzano JC, Silva SG, Pires FR, Vieira GC, Rôças IN, Alves FR (2017) What happens to unprepared root canal walls: a correlative analysis using micro-computed tomography and histology/scanning electron microscopy. Int Endod J Feb 14.
  66. 66.
    Siqueira JF Jr, Rôças IN, Paiva SS, Magalhães KM, Guimarães-Pinto T 2007 Cultivable bacteria in infected root canals as identified by 16S rRNA gene sequencing. Oral Microbiol Immunol 22:266–271, 4,
  67. 67.
    Silva Almeida LH, Moraes RR, Morgental RD, Pappen FG (2017) Are premixed calcium silicate-based endodontic sealers comparable to conventional materials? A systematic review of in vitro studies. J Endod 43(4):527–535. CrossRefPubMedGoogle Scholar
  68. 68.
    AlShwaimi E, Bogari D, Ajaj R, Al-Shahrani S, Almas K, Majeed A (2016) In vitro antimicrobial effectiveness of root canal sealers against Enterococcus faecalis: a systematic review. J Endod 42:1588–1597CrossRefPubMedGoogle Scholar
  69. 69.
    Ahn SY, Kim HC, Kim E (2016) Kinematic effects of nickel-titanium instruments with reciprocating or continuous rotation motion: a systematic review of in vitro studies. J Endod 42(7):1009–1017. CrossRefPubMedGoogle Scholar
  70. 70.
    Love RM (2001) Enterococcus faecalis--a mechanism for its role in endodontic failure. Int Endod J 34(5):399–405. CrossRefPubMedGoogle Scholar
  71. 71.
    Sedgley CM, Lennan SL, Appelbe OK (2005) Survival of Enterococcus faecalis in root canals ex vivo. Int Endod J 38(10):735–742. CrossRefPubMedGoogle Scholar
  72. 72.
    Svensäter G, Bergenholtz G (2004) Biofilms in endodontic infections. Endod Topics 9(1):27–36. CrossRefGoogle Scholar
  73. 73.
    Kakoli P, Nandakumar R, Romberg E, Arola D, Fouad AF (2009) The effect of age on bacterial penetration of radicular dentin. J Endod 35:78–81CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ozdemir HO, Buzoglu HD, Calt S, Stabholz A, Steinberg D (2010) Effect of ethylenediaminetetraacetic acid and sodium hypochlorite irrigation on Enterococcus faecalis biofilm colonization in young and old human root canal dentin: in vitro study. J Endod 36(5):842–846. CrossRefPubMedGoogle Scholar
  75. 75.
    Boutsioukis C, Verhaagen B, Walmsley AD, Versluis M, van der Sluis LW (2013) Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals. Int Endod J 46:1046–1055CrossRefPubMedGoogle Scholar
  76. 76.
    Amato M, Vanoni-Heineken I, Hecker H, Weiger R (2011) Curved versus straight root canals: the benefit of activated irrigation techniques on dentin debris removal. Oral Surg Oral Med Oral Path Oral Radiol Endod 111(4):529–534. CrossRefGoogle Scholar
  77. 77.
    Aminoshariae A, Kulild JC (2015) Master apical file size – smaller or larger: a systematic review of healing outcomes. Int Endod J 48(7):639–647. CrossRefPubMedGoogle Scholar
  78. 78.
    Hauser V, Braun A, Frentzen M (2007) Penetration depth of dye marker into dentine using novel hydrodynamic system (RinsEndo). Int Endod J 40:644–652CrossRefPubMedGoogle Scholar
  79. 79.
    Chau NP, Chung NH, Jeon JG (2015) Relationships between the antibacterial activity of sodium hypochlorite and treatment time and biofilm age in early Enterococcus faecalis biofilms. Int Endod J 48(8):782–789. CrossRefPubMedGoogle Scholar
  80. 80.
    Shen Y, Stojicic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37:657–661CrossRefPubMedGoogle Scholar
  81. 81.
    Neelakantan P, Devaraj S, Jagannathan N (2016) Histologic assessment of debridement of the root canal isthmus of mandibular molars by irrigant activation techniques ex vivo. J Endod 42:1268–1272CrossRefPubMedGoogle Scholar
  82. 82.
    Virdee SS, Seymour DW, Farnell D, Bhamra G, Bhakta S (2017) Efficacy of irrigant activation techniques in removing intracanal smear layer and debris from mature permanent teeth: a systematic review and meta-analysis. Int Endod J.
  83. 83.
    Shahriari S, Kasraei S, Roshanaei G, Karkeabadi H, Davanloo H (2017) Efficacy of sodium hypochlorite activated with laser in intracanal smear layer removal: an SEM study. J Lasers Med Sci 8:36–41CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Mancini M, Cerroni L, Iorio L, Dall'Asta L, Cianconi L (2017) FESEM evaluation of smear layer removal using different irrigant activation methods (EndoActivator, EndoVac, PUI and LAI) An in vitro study. Clin Oral Investig.
  85. 85.
    Kishen A, Haapasalo M (2010) Biofilm models and methods of biofilm assessment. Endod Topics 22(1):58–78. CrossRefGoogle Scholar
  86. 86.
    Ma J, Wang Z, Shen Y, Haapasalo M (2011) A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod 37(10):1380–1385. CrossRefPubMedGoogle Scholar
  87. 87.
    Kim SY, Shin Y, Lee CY, Jung IY (2013) In vivo quantitative evaluation of live and dead bacteria in root canal infection by using propidium monoazide with real-time PCR. J Endod 39(11):1359–1363. CrossRefPubMedGoogle Scholar
  88. 88.
    Krithikadatta J, Indira R, Dorothykalyani AL (2007) Disinfection of dentinal tubules with 2% chlorhexidine, 2% metronidazole, bioactive glass when compared with calcium hydroxide as intracanal medicaments. J Endod 33:1473–1476CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Venkateshbabu Nagendrababu
    • 1
  • Jayakumar Jayaraman
    • 2
  • Anand Suresh
    • 3
  • Senthilnayagam Kalyanasundaram
    • 4
  • Prasanna Neelakantan
    • 5
  1. 1.Division of Clinical Dentistry, School of DentistryInternational Medical UniversityKuala LumpurMalaysia
  2. 2.Division of Children and Community Oral Health, School of DentistryInternational Medical UniversityKuala LumpurMalaysia
  3. 3.Department of Conservative Dentistry and EndodonticsPenang International Dental CollegePenangMalaysia
  4. 4.Department of Dental SurgeryK.A.P.V Government Medical CollegeTiruchirappalliIndia
  5. 5.Discipline of Endodontology, Faculty of DentistryThe University of Hong KongPok Fu LamHong Kong

Personalised recommendations