Clinical Oral Investigations

, Volume 22, Issue 2, pp 811–817 | Cite as

Retreatability of three calcium silicate-containing sealers and one epoxy resin-based root canal sealer with four different root canal instruments

  • David Donnermeyer
  • Clarissa Bunne
  • Edgar Schäfer
  • Till Dammaschke
Original Article



The objective of the study was to compare the retreatability of three calcium silicate-containing sealers (BioRoot RCS, MTA Fillapex, Endo C.P.M.) and an epoxy resin-based sealer (AH Plus) with different root canal instruments (Hedström files, Reciproc R40, Mtwo retreatment file R 25/.05 + Mtwo 40/.06, and F6 SkyTaper) concerning sealer remnants and retreatment time.

Materials and methods

Root canals of 192 teeth were instrumented with Reciproc R40. All root canals were obturated using the single-cone technique with Reciproc R40 gutta-percha and one of the sealers (n = 48 per sealer). Two months later, retreatment was performed using one of the mentioned instruments (n = 12 per instrument and sealer). The roots were split longitudinally, and both halves were investigated using light microscopy. The percentage of sealer remnants covering the root canal wall was evaluated using the software ImageJ. The time required for retreatment was recorded. Statistical analysis was performed using two-way ANOVA and Student-Newman-Keuls post hoc test.


Regarding the percentage of root canal filling remnants as well as retreatment time, two-way ANOVA indicated that the results were significantly affected by the sealer (p < 0.001) and by the instrument used (p < 0.05). Overall, the use of AH Plus was associated with significantly more remnants compared to all other sealers (p < 0.001) and F6 SkyTaper instruments allowed significantly faster retreatment than the other instruments (p < 0.05).


The retreatability of calcium silicate-containing sealers was better compared to AH Plus as less sealer remnants and shorter retreatment times were observed. Retreatment with engine-driven NiTi instruments was superior compared to hand instrumentation.

Clinical relevance

Engine-driven NiTi instruments are better suited to remove root canal fillings than stainless steel Hedström files.


Calcium silicate-containing sealer Epoxy resin-based sealer Retreatment Root canal instruments 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.



Ethical approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not required.


  1. 1.
    De Cleen MJ, Schuurs AH, Wesselink PR, Wu MK (1993) Periapical status and prevalence of endodontic treatment in an adult Dutch population. Int Endod J 26:112–119CrossRefPubMedGoogle Scholar
  2. 2.
    Weiger R, Hitzler S, Hermle G, Lost C (1997) Periapical status, quality of root canal fillings and estimated endodontic treatment needs in an urban German population. Endod Dent Traumatol 13:69–74CrossRefPubMedGoogle Scholar
  3. 3.
    Pak JG, Fayazi S, White SN (2012) Prevalence of periapical radiolucency and root canal treatment: a systematic review of cross-sectional studies. J Endod 38:1170–1176. doi: 10.1016/j.joen.2012.05.023 CrossRefPubMedGoogle Scholar
  4. 4.
    Lin LM, Skribner JE, Gängler P (1992) Factors associated with endodontic treatment failures. J Endod 18:625–627CrossRefPubMedGoogle Scholar
  5. 5.
    Nair PNR (2006) On the causes of persistent apical periodontitis: a review. Int Endod J 39:249–281CrossRefPubMedGoogle Scholar
  6. 6.
    Vârlan C, Dimitriu B, Vârlan V, Bodnar D, Suciu I (2009) Current opinions concerning the restoration of endodontically treated teeth: basic principles. J Med Life 2:165–172PubMedPubMedCentralGoogle Scholar
  7. 7.
    Zehnder M, Paqué F (2011) Disinfection of the root canal system during root canal re-treatment. Endod Top 19:58–73CrossRefGoogle Scholar
  8. 8.
    Kang M, In Jung H, Song M, Kim SY, Kim HC, Kim E (2015) Outcome of nonsurgical retreatment and endodontic microsurgery: a meta-analysis. Clin Oral Investig 19:569–582. doi: 10.1007/s00784-015-1398-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Nair PNR (2004) Pathogenesis of apical periodontitis and the causes of endodontic failure. Crit Rev Oral Biol Med 15:348–381CrossRefPubMedGoogle Scholar
  10. 10.
    Grischke J, Müller-Heine A, Hülsmann M (2014) The effect of four different irrigation systems in the removal of a root canal sealer. Clin Oral Investig 18:1845–1851. doi: 10.1007/s00784-013-1161-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Dammaschke T, Camp JH, Bogen G (2014) MTA in vital pulp therapy. In: Torabinejad M (ed) Mineral trioxide aggregate. Properties and clinical applications. Wiley Blackwell Ames, pp 71-110.Google Scholar
  12. 12.
    Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I (2005) Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 31:97–100CrossRefPubMedGoogle Scholar
  13. 13.
    Reyes-Carmona JF, Felippe MS, Felippe WT (2009) Biomineralization ability and interaction of mineral trioxide aggregate and white Portland cement with dentin in a phosphate-containing fluid. J Endod 35:731–736. doi: 10.1016/j.joen.2009.02.011 CrossRefPubMedGoogle Scholar
  14. 14.
    Han L, Okiji T (2011) Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 44:1081–1087. doi: 10.1111/j.1365-2591.2011.01924.x CrossRefPubMedGoogle Scholar
  15. 15.
    Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF (2012) Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 91:454–459. doi: 10.1177/0022034512443068 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kaup M, Dammann CH, Schäfer E, Dammaschke T (2015) Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo. Head Face Med 11:14. doi: 10.1186/s13005-015-0071-z CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang Z, Shen Y, Haapasalo M (2014) Dentin extends the antibacterial effect of endodontic sealers against Enterococcus faecalis biofilms. J Endod 40:505–508. doi: 10.1016/j.joen.2013.10.042 CrossRefPubMedGoogle Scholar
  18. 18.
    Gomes-Filho JE, Watanabe S, Gomes AC, Faria MD, Lodi CS, Penha Oliveira SH (2009) Evaluation of the effects of endodontic materials on fibroblast viability and cytokine production. J Endod 35:1577–1579. doi: 10.1016/j.joen.2009.07.022 CrossRefPubMedGoogle Scholar
  19. 19.
    Scarparo RK, Haddad D, Acasigua GA, Fossati AC, Fachin EV, Grecca FS (2010) Mineral trioxide aggregate-based sealer: analysis of tissue reactions to a new endodontic material. J Endod 36:1174–1178. doi: 10.1016/j.joen.2010.02.031 CrossRefPubMedGoogle Scholar
  20. 20.
    Camps J, Jeanneau C, El Ayachi I, Laurent P, About I (2015) Bioactivity of a calcium silicate-based endodontic cement (BioRoot RCS): interactions with human periodontal ligament cells in vitro. J Endod 41:1469–1473. doi: 10.1016/j.joen.2015.04.011 CrossRefPubMedGoogle Scholar
  21. 21.
    Dimitrova-Nakov S, Uzunoglu E, Ardila-Osorio H, Baudry A, Richard G, Kellermann O, Goldberg M (2015) In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells. Dent Mater 31:1290–1297. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  22. 22.
    Eldeniz AU, Shehata M, Högg C, Reichl FX (2016) DNA double-strand breaks caused by new and contemporary endodontic sealers. Int Endod J 49:1141–1151. doi: 10.1111/iej.12577 CrossRefPubMedGoogle Scholar
  23. 23.
    Cornélio AL, Rodrigues EM, Salles LP, Mestieri LB, Faria G, Guerreiro-Tanomaru JM, Tanomaru-Filho M (2017) Bioactivity of MTA Plus, Biodentine and experimental calcium silicate-based cements in human osteoblast-like cells. Int Endod J 50:39–47. doi: 10.1111/iej.12589 CrossRefGoogle Scholar
  24. 24.
    Zuolo AS, Mello JE Jr, Cunha RS, Zuolo ML, Bueno CE (2013) Efficacy of reciprocating and rotary techniques for removing filling material during root canal retreatment. Int Endod J 46:947–953. doi: 10.1111/iej.12085 CrossRefPubMedGoogle Scholar
  25. 25.
    Rios MA, Villela AM, Cunha RS, Velasco RC, De Martin AS, Kato AS, Bueno CE (2014) Efficacy of 2 reciprocating systems compared with a rotary retreatment system for gutta-percha removal. J Endod 40:543–546. doi: 10.1016/j.joen.2013.11.013 CrossRefGoogle Scholar
  26. 26.
    de Souza PF, Oliveira Goncalves LC, Franco Marques AA, Sponchiado Junior EC, Roberti Garcia LF, de Carvalho FM (2015) Root canal retreatment using reciprocating and continuous rotary nickel-titanium instruments. Eur J Dent 9:234–239. doi: 10.4103/1305-7456.156834 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Koçak MM, Koçak S, Türker SA, Sağlam BC (2016) Cleaning efficacy of reciprocal and rotary systems in the removal of root canal filling material. J Conserv Dent 19:184–188. doi: 10.4103/0972-0707.178706 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hülsmann M, Bluhm V (2004) Efficacy, cleaning ability and safety of different rotary NiTi instruments in root canal retreatment. Int Endod J 37:468–476CrossRefPubMedGoogle Scholar
  29. 29.
    Iizuka N, Takenaka S, Shigetani Y, Okiji T (2008) Removal of resin-based root canal filling materials with K3 rotary instruments: relative efficacy for different combinations of filling materials. Dent Mater J 27:75–80CrossRefPubMedGoogle Scholar
  30. 30.
    Neelakantan P, Grotra D, Sharma S (2013) Retreatability of 2 mineral trioxide aggregate-based root canal sealers: a cone-beam computed tomography analysis. J Endod 39:893–896. doi: 10.1016/j.joen.2013.04.022 CrossRefPubMedGoogle Scholar
  31. 31.
    Rödig T, Reicherts P, Konietschke F, Dullin C, Hahn W, Hülsmann M (2014) Efficacy of reciprocating and rotary NiTi instruments for retreatment of curved root canals assessed by micro-CT. Int Endod J 47:942–948. doi: 10.1111/iej.12239 CrossRefPubMedGoogle Scholar
  32. 32.
    Garg A, Nagpal A, Shetty S, Kumar S, Singh KK, Garg A (2015) Comparison of time required by D-RaCe, R-Endo and Mtwo instruments for retreatment: an in vitro study. J Clin Diagn Res 9:ZC47–ZC49. doi: 10.7860/JCDR/2015/11100.5596 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Uzunoglu E, Yilmaz Z, Sungur DD, Altundasar E (2015) Retreatability of root canals obturated using gutta-percha with bioceramic, MTA and resin-based sealers. Iran Endod J 10:93–98PubMedPubMedCentralGoogle Scholar
  34. 34.
    Joseph M, Ahlawat J, Malhotra A, Rao M, Sharma A, Talwar S (2016) In vitro evaluation of efficacy of different rotary instrument systems for gutta percha removal during root canal retreatment. J Clin Exp Dent 8:e355–e360. doi: 10.4317/jced.52488 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Bramante CM, Fidelis NS, Assumpção TS, Bernardineli N, Garcia RB, Bramante AS, de Moraes IG (2010) Heat release, time required, and cleaning ability of Mtwo R and ProTaper universal retreatment systems in the removal of filling material. J Endod 36:1870–1873. doi: 10.1016/j.joen.2010.08.013 CrossRefPubMedGoogle Scholar
  36. 36.
    Yadav P, Bharath MJ, Sahadev CK, Makonahalli Ramachandra PK, Rao Y, Ali A, Mohamed S (2013) An in vitro CT comparison of gutta-percha removal with two rotary systems and Hedstrom files. Iran Endod J 8:59–64PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zuolo AS, Zuolo ML, Bueno CES, Chu R, Cunha RS (2016) Evaluation of the efficacy of TRUShape and Reciproc file systems in the removal of root filling material: an ex vivo microcomputed tomographic study. J Endod 42:315–319. doi: 10.1016/j.joen.2015.11.005 CrossRefPubMedGoogle Scholar
  38. 38.
    Nagas E, Uyanik MO, Eymirli A, Cehreli ZC, Vallittu PK, Lassila LVJ, Durmaz V (2012) Dentin moisture conditions after the adhesion of root canal sealers. J Endod 38:240–244. doi: 10.1016/j.joen.2011.09.027 CrossRefPubMedGoogle Scholar
  39. 39.
    Ghoneim AG, Lutfy RA, Sabet NE, Fayyad DM (2011) Resistance to fracture of roots obturated with novel canal-filling systems. J Endod 37:1590–1592. doi: 10.1016/j.joen.2011.08.008 CrossRefPubMedGoogle Scholar
  40. 40.
    Shokouhinejad N, Razmi H, Nekoofar MH, Sajadi S, Dummer PM, Khoshkhounejad M (2013) Push-out bond strength of bioceramic materials in a synthetic tissue fluid. J Dent (Tehran) 10:540–547Google Scholar
  41. 41.
    Hess D, Solomon E, Spears R, He J (2011) Retreatability of a bioceramic root canal sealing material. J Endod 37:1547–1549. doi: 10.1016/j.joen.2011.08.016 CrossRefPubMedGoogle Scholar
  42. 42.
    Ersev H, Yilmaz B, Dinçol ME, Dağlaroğlu R (2012) The efficacy of ProTaper Universal rotary retreatment instrumentation to remove single gutta-percha cones cemented with several endodontic sealers. Int Endod J 45:756–762. doi: 10.1111/j.1365-2591.2012.02032.x CrossRefPubMedGoogle Scholar
  43. 43.
    Schirrmeister JF, Wrbas KT, Meyer KM, Altenburger MJ, Hellwig E (2006) Efficacy of different rotary instruments for gutta-percha removal in root canal retreatment. J Endod 32:469–472CrossRefPubMedGoogle Scholar
  44. 44.
    Alves FR, Marceliano-Alves MF, Sousa JC, Silveira SB, Provenzano JC, Siqueira JF Jr (2016) Removal of root canal fillings in curved canals using either reciprocating single- or rotary multi-instrument systems and a supplementary step with the XP-Endo finisher. J Endod 42:1114–1119. doi: 10.1016/j.joen.2016.04.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • David Donnermeyer
    • 1
  • Clarissa Bunne
    • 1
  • Edgar Schäfer
    • 2
  • Till Dammaschke
    • 1
  1. 1.Department of Periodontology and Operative DentistryWestphalian Wilhelms UniversityMunsterGermany
  2. 2.Central Interdisciplinary Ambulance in the School of DentistryMünsterGermany

Personalised recommendations