Clinical Oral Investigations

, Volume 21, Issue 5, pp 1743–1752 | Cite as

Bacterial invasion into radicular dentine—an in vitro study

  • Simone Stauffacher
  • Adrian Lussi
  • Sandor Nietzsche
  • Klaus W. NeuhausEmail author
  • Sigrun Eick
Original Article



We wanted to investigate differences in invasiveness into radicular dentinal tubules by monocultured and co-cultured bacteria frequently found in infected root canals.


Fifty-one human roots were incubated for 8 weeks with monocultured Streptococcus gordonii ATCC 10558, Streptococcus sanguinis ATCC 10556, and with five capnophiles/anaerobes as well as with capnophiles/anaerobes co-cultured with a streptococcal species. Thereafter, bacterial samples were cultured from the inner, middle, and outer third of the root dentine of longitudinally broken teeth (n = 5). In addition, scanning electron microscopy (SEM) images were obtained.


Single gram-positive species were able to penetrate into the middle and outer third of the root dentine. Fusobacterium nucleatum ATCC 25586 was not found in any of the dentine specimens. Prevotella intermedia ATCC 25611 and Porphyromonas gingivalis ATCC 33277 were found in the inner and middle third.

The bacterial load of streptococci was higher in all thirds in co-cultures compared to single infections. In co-cultures with streptococci, Actinomyces oris ATCC 43146 was found in the outer third in 9/10 samples, whereas P. intermedia ATCC 25611 was not detectable inside dentine. Co-culture with S. sanguinis ATCC 10556 enabled F. nucleatum ATCC 25586 to invade dentine; SEM images showed that F. nucleatum ATCC 25586 had a swollen shape.


Invasiveness of bacteria into dentinal tubules is species-specific and may change depending on culturing as a single species or co-culturing with other bacteria.

Clinical relevance

Oral streptococci may promote or inhibit invasion of capnophiles/anaerobes into radicular dentine.


Bacterial invasion Root dentine Scanning electron microscopy Co-culture Monoculture Dentinal tubules 



The authors are grateful to Stéphanie Larti, Anna Magdon, and Marianne Weibel (University of Bern, Department of Periodontology, Laboratory of Oral Microbiology) for their technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


The work was supported by the participating institutions.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Sundqvist GK, Eckerbom MI, Larsson AP, Sjogren UT (1979) Capacity of anaerobic bacteria from necrotic dental pulps to induce purulent infections. Infect Immun 25(2):685–693PubMedPubMedCentralGoogle Scholar
  2. 2.
    Sakamoto M, Rocas IN, Siqueira JF Jr, Benno Y (2006) Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infections. Oral Microbiol Immunol 21(2):112–122CrossRefPubMedGoogle Scholar
  3. 3.
    Siqueira JF Jr, Rocas IN, Rosado AS (2004) Investigation of bacterial communities associated with asymptomatic and symptomatic endodontic infections by denaturing gradient gel electrophoresis fingerprinting approach. Oral Microbiol Immunol 19(6):363–370CrossRefPubMedGoogle Scholar
  4. 4.
    Siqueira JF Jr, Rocas IN (2008) Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 34(11):1291–1301 e1293CrossRefPubMedGoogle Scholar
  5. 5.
    Kakehashi S, Stanley HR, Fitzgerald RJ (1965) The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 20:340–349CrossRefPubMedGoogle Scholar
  6. 6.
    Lin LM, Skribner JE, Gängler P (1992) Factors associated with endodontic treatment failures. J Endod 18(12):625–627CrossRefPubMedGoogle Scholar
  7. 7.
    Matsuo T, Shirakami T, Ozaki K, Nakanishi T, Yumoto H, Ebisu S (2003) An immunohistological study of the localization of bacteria invading root pulpal walls of teeth with periapical lesions. J Endod 29(3):194–200CrossRefPubMedGoogle Scholar
  8. 8.
    Carrigan PJ, Morse DR, Furst ML, Sinai IH (1984) A scanning electron microscopic evaluation of human dentinal tubules according to age and location. J Endod 10(8):359–363CrossRefPubMedGoogle Scholar
  9. 9.
    Love RM, Jenkinson HF (2002) Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med 13(2):171–183CrossRefPubMedGoogle Scholar
  10. 10.
    Love RM (1996) Regional variation in root dentinal tubule infection by Streptococcus gordonii. J Endod 22(6):290–293CrossRefPubMedGoogle Scholar
  11. 11.
    Perez F, Calas P, de Falguerolles A, Maurette A (1993) Migration of a Streptococcus sanguis strain through the root dentinal tubules. J Endod 19(6):297–301CrossRefPubMedGoogle Scholar
  12. 12.
    Siqueira JF, DeUzeda M, Fonseca MEF (1996) A scanning electron microscopic evaluation of in vitro dentinal tubules penetration by selected anaerobic bacteria. J Endod 22(6):308–310CrossRefPubMedGoogle Scholar
  13. 13.
    Haapasalo M, Orstavik D (1987) In vitro infection and disinfection of dentinal tubules. J Dent Res 66(8):1375–1379CrossRefPubMedGoogle Scholar
  14. 14.
    Perez F, Rochd T, Lodter JP, Calas P, Michel G (1993) In vitro study of the penetration of three bacterial strains into root dentine. Oral Surg Oral Med Oral Pathol 76(1):97–103CrossRefPubMedGoogle Scholar
  15. 15.
    Love RM, McMillan MD, Jenkinson HF (1997) Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. Infect Immun 65(12):5157–5164PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66(3):486–505CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    He X, Hu W, Kaplan CW, Guo L, Shi W, Lux R (2012) Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. Microb Ecol 63(3):532–542CrossRefPubMedGoogle Scholar
  18. 18.
    Love RM, McMillan MD, Park Y, Jenkinson HF (2000) Coinvasion of dentinal tubules by Porphyromonas gingivalis and Streptococcus gordonii depends upon binding specificity of streptococcal antigen I/II adhesin. Infect Immun 68(3):1359–1365CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gomes BP, Pinheiro ET, Gade-Neto CR, Sousa EL, Ferraz CC, Zaia AA, Teixera FB, Souza-Filho FJ (2004) Microbiological examination of infected dental root canals. Oral Microbiol Immunol 19(2):71–76CrossRefPubMedGoogle Scholar
  20. 20.
    Rocas IN, Siqueira JF Jr (2008) Root canal microbiota of teeth with chronic apical periodontitis. J Clin Microbiol 46(11):3599–3606CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Siqueira JF Jr, Rocas IN, Souto R, de Uzeda M, Colombo AP (2002) Actinomyces species, streptococci, and Enterococcus faecalis in primary root canal infections. J Endod 28(3):168–172CrossRefPubMedGoogle Scholar
  22. 22.
    Santos AL, Siqueira JF Jr, Rocas IN, Jesus EC, Rosado AS, Tiedje JM (2011) Comparing the bacterial diversity of acute and chronic dental root canal infections. PLoS One 6(11):e28088CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fouad AF, Barry J, Caimano M, Clawson M, Zhu Q, Carver R, Hazlett K, Radolf JD (2002) PCR-based identification of bacteria associated with endodontic infections. J Clin Microbiol 40(9):3223–3231CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hong BY, Lee TK, Lim SM, Chang SW, Park J, Han SH, Shu Q, Safavi KE, Fouad AF, Kum KY (2013) Microbial analysis in primary and persistent endodontic infections by using pyrosequencing. J Endod 39(9):1136–1140CrossRefPubMedGoogle Scholar
  25. 25.
    Sakamoto M, Siqueira JF Jr, Rocas IN, Benno Y (2008) Molecular analysis of the root canal microbiota associated with endodontic treatment failures. Oral Microbiol Immunol 23(4):275–281CrossRefPubMedGoogle Scholar
  26. 26.
    Berkiten M, Okar I, Berkiten R (2000) In vitro study of the penetration of Streptococcus sanguis and Prevotella intermedia strains into human dentinal tubules. J Endod 26(4):236–239CrossRefPubMedGoogle Scholar
  27. 27.
    Peters LB, Wesselink PR, Buijs JF, van Winkelhoff AJ (2001) Viable bacteria in root dentinal tubules of teeth with apical periodontitis. J Endod 27(2):76–81CrossRefPubMedGoogle Scholar
  28. 28.
    Akpata ES, Blechman H (1982) Bacterial invasion of pulpal dentin wall in vitro. J Dent Res 61(2):435–438CrossRefPubMedGoogle Scholar
  29. 29.
    Kakoli P, Nandakumar R, Romberg E, Arola D, Fouad AF (2009) The effect of age on bacterial penetration of radicular dentin. J Endod 35(1):78–81CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y, Li M, Sojar HT, Genco RJ, Kuramitsu HK, Deng CX (2005) Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol 187(15):5330–5340CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li T, Johansson I, Hay DI, Stromberg N (1999) Strains of Actinomyces naeslundii and Actinomyces viscosus exhibit structurally variant fimbrial subunit proteins and bind to different peptide motifs in salivary proteins. Infect Immun 67(5):2053–2059PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu C, Mishra A, Yang J, Cisar JO, Das A, Ton-That H (2011) Dual function of a tip fimbrillin of Actinomyces in fimbrial assembly and receptor binding. J Bacteriol 193(13):3197–3206CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Back CR, Douglas SK, Emerson JE, Nobbs AH, Jenkinson HF (2015) Streptococcus gordonii DL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide of Actinomyces oris T14V. Mol Oral Microbiol 30(5):411–424CrossRefPubMedGoogle Scholar
  34. 34.
    Reardon-Robinson ME, Wu C, Mishra A, Chang C, Bier N, Das A, Ton-That H (2014) Pilus hijacking by a bacterial coaggregation factor critical for oral biofilm development. Proc Natl Acad Sci U S A 111(10):3835–3840CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Adriaens PA, Edwards CA, De Boever JA, Loesche WJ (1988) Ultrastructural observations on bacterial invasion in cementum and radicular dentin of periodontally diseased human teeth. J Periodontol 59(8):493–503CrossRefPubMedGoogle Scholar
  36. 36.
    Gomes BP, Berber VB, Kokaras AS, Chen T, Paster BJ (2015) Microbiomes of endodontic-periodontal lesions before and after chemomechanical preparation. J Endod 41(12):1975–1984CrossRefPubMedGoogle Scholar
  37. 37.
    Li H, Guan R, Sun J, Hou B (2014) Bacteria community study of combined periodontal-endodontic lesions using denaturing gradient gel electrophoresis and sequencing analysis. J Periodontol 85(10):1442–1449CrossRefPubMedGoogle Scholar
  38. 38.
    Pereira CV, Stipp RN, Fonseca DC, Pereira LJ, Hofling JF (2011) Detection and clonal analysis of anaerobic bacteria associated to endodontic-periodontal lesions. J Periodontol 82(12):1767–1775CrossRefPubMedGoogle Scholar
  39. 39.
    Bago I, Plecko V, Gabric Panduric D, Schauperl Z, Baraba A, Anic I (2013) Antimicrobial efficacy of a high-power diode laser, photo-activated disinfection, conventional and sonic activated irrigation during root canal treatment. Int Endod J 46(4):339–347CrossRefPubMedGoogle Scholar
  40. 40.
    Marinho AC, Martinho FC, Goncalves LM, Rabang HR, Gomes BP (2015) Does the Reciproc file remove root canal bacteria and endotoxins as effectively as multifile rotary systems? Int Endod J 48(6):542–548CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Simone Stauffacher
    • 1
  • Adrian Lussi
    • 1
  • Sandor Nietzsche
    • 2
  • Klaus W. Neuhaus
    • 1
    Email author
  • Sigrun Eick
    • 3
  1. 1.Department of Preventive, Restorative and Pediatric DentistryUniversity of BernBernSwitzerland
  2. 2.Center of Electron MicroscopyUniversity Hospital of JenaJenaGermany
  3. 3.Laboratory of Oral Microbiology, Department of PeriodontologyUniversity of BernBernSwitzerland

Personalised recommendations