Clinical Oral Investigations

, Volume 21, Issue 4, pp 1173–1182 | Cite as

Light transmittance and polymerization kinetics of amorphous calcium phosphate composites

  • Matej Par
  • Danijela Marovic
  • Hrvoje Skenderovic
  • Ozren Gamulin
  • Eva Klaric
  • Zrinka Tarle
Original Article

Abstract

Objectives

This study investigated light transmittance and polymerization kinetics of experimental remineralizing composite materials based on amorphous calcium phosphate (ACP), reinforced with inert fillers.

Materials and methods

Light-curable composites were composed of Bis-EMA-TEGDMA-HEMA resin and ACP, barium glass, and silica fillers. Additionally, a commercial composite Tetric EvoCeram was used as a reference. Light transmittance was recorded in real-time during curing, and transmittance curves were used to assess polymerization kinetics. To obtain additional information on polymerization kinetics, temperature rise was monitored in real-time during curing and degree of conversion was measured immediately and 24 h post-cure.

Results

Light transmittance values of 2-mm thick samples of uncured ACP composites (2.3–2.9 %) were significantly lower than those of the commercial composite (3.8 %). The ACP composites presented a considerable transmittance rise during curing, resulting in post-cure transmittance values similar to or higher than those of the commercial composite (5.5–7.9 vs. 5.4 %). The initial part of light transmittance curves of experimental composites showed a linear rise that lasted for 7–20 s. Linear fitting was performed to obtain a function whose slope was assessed as a measure of polymerization rate. Comparison of transmittance and temperature curves showed that the linear transmittance rise lasted throughout the most part of the pre-vitrification period.

Conclusions

The linear rise of light transmittance during curing has not been reported in previous studies and may indicate a unique kinetic behavior, characterized by a long period of nearly constant polymerization rate.

Clinical relevance

The observed kinetic behavior may result in slower development of polymerization shrinkage stress but also inferior mechanical properties.

Keywords

Polymerization kinetics Dental composites Remineralizing composites Light transmittance Amorphous calcium phosphate 

Notes

Acknowledgments

We thank Mira Ristić and Marijan Marciuš from the Division of Materials Chemistry, Ruđer Bošković Institute, for the SEM micrographs. We also gratefully acknowledge Drago Skrtic for providing us with the zirconia-hybridized ACP.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This investigation was supported by Croatian Science Foundation (Project 08/31 Evaluation of new bioactive materials and procedures in restorative dental medicine).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Skrtic D, Antonucci JM, Eanes ED (2003) Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol 108(3):167–182CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li F, Wang P, Weir MD, Fouad AF, Xu HH (2014) Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater 10(6):2804–2813. doi: 10.1016/j.actbio.2014.02.033 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Weir MD, Chow LC, Xu HH (2012) Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res 91(10):979–984. doi: 10.1177/0022034512458288 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Skrtic D, Antonucci JM (2007) Dental composites based on amorphous calcium phosphate—resin composition/physicochemical properties study. J Biomater Appl 21(4):375–393. doi: 10.1177/0885328206064823 CrossRefPubMedGoogle Scholar
  5. 5.
    Marovic D, Tarle Z, Hiller KA, Muller R, Ristic M, Rosentritt M, Skrtic D, Schmalz G (2014) Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate. Clin Oral Investig 18(3):783–792. doi: 10.1007/s00784-013-1044-x CrossRefPubMedGoogle Scholar
  6. 6.
    Marovic D, Tarle Z, Hiller KA, Muller R, Rosentritt M, Skrtic D, Schmalz G (2014) Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers. Dent Mater 30(9):1052–1060. doi: 10.1016/j.dental.2014.06.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Marovic D, Tarle Z, Ristic M, Music S, Skrtic D, Hiller KA, Schmalz G (2011) Influence of different types of fillers on the degree of conversion of ACP composite resins. Acta Stomatol Croat 45:231–238Google Scholar
  8. 8.
    Xu HH, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC, Antonucci JM (2010) Strong nanocomposites with Ca, PO4, and F release for caries inhibition. J Dent Res 89(1):19–28. doi: 10.1177/0022034509351969 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kawaguchi M, Fukushima T, Miyazaki K (1994) The relationship between cure depth and transmission coefficient of visible-light-activated resin composites. J Dent Res 73(2):516–521. doi: 10.1177/00220345940730020601 PubMedGoogle Scholar
  10. 10.
    Howard B, Wilson ND, Newman SM, Pfeifer CS, Stansbury JW (2010) Relationships between conversion, temperature and optical properties during composite photopolymerization. Acta Biomater 6(6):2053–2059. doi: 10.1016/j.actbio.2009.11.006 CrossRefPubMedGoogle Scholar
  11. 11.
    Musanje L, Darvell BW (2006) Curing-light attenuation in filled-resin restorative materials. Dent Mater 22(9):804–817. doi: 10.1016/j.dental.2005.11.009 CrossRefPubMedGoogle Scholar
  12. 12.
    Shibayama M, Ozeki S, Norisuye T (2005) Real-time dynamic light scattering on gelation and vitrification. Polymer 46(7):2381–2388. doi: 10.1016/j.polymer.2005.01.018 CrossRefGoogle Scholar
  13. 13.
    Seghi RR, Gritz MD, Kim J (1990) Colorimetric changes in composites resulting from visible-light-initiated polymerization. Dent Mater 6(2):133–137. doi: 10.1016/S0109-5641(05)80044-2 CrossRefPubMedGoogle Scholar
  14. 14.
    Harrington E, Wilson HJ, Shortall AC (1996) Light-activated restorative materials: a method of determining effective radiation times. J Oral Rehabil 23(3):210–218. doi: 10.1111/j.1365-2842.1996.tb01235.x CrossRefPubMedGoogle Scholar
  15. 15.
    Ogunyinka A, Palin WM, Shortall AC, Marquis PM (2007) Photoinitiation chemistry affects light transmission and degree of conversion of curing experimental dental resin composites. Dent Mater 23(7):807–813. doi: 10.1016/j.dental.2006.06.016 CrossRefPubMedGoogle Scholar
  16. 16.
    Fujita K, Ikemi T, Nishiyama N (2011) Effects of particle size of silica filler on polymerization conversion in a light-curing resin composite. Dent Mater 27(11):1079–1085. doi: 10.1016/j.dental.2011.07.010 CrossRefPubMedGoogle Scholar
  17. 17.
    Shortall AC, Palin WM, Burtscher P (2008) Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res 87(1):84–88. doi: 10.1177/154405910808700115 CrossRefPubMedGoogle Scholar
  18. 18.
    Rosentritt M, Shortall AC, Palin WM (2010) Dynamic monitoring of curing photoactive resins: a methods comparison. Dent Mater 26(6):565–570. doi: 10.1016/j.dental.2010.02.006 CrossRefPubMedGoogle Scholar
  19. 19.
    Ilie N, Durner J (2014) Polymerization kinetic calculations in dental composites: a method comparison analysis. Clin Oral Investig 18(6):1587–1596. doi: 10.1007/s00784-013-1128-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Andrzejewska E (2001) Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 26(4):605–665. doi: 10.1016/S0079-6700(01)00004-1 CrossRefGoogle Scholar
  21. 21.
    Par M, Gamulin O, Marovic D, Skenderovic H, Klaric E, Tarle Z (2016) Conversion and temperature rise of remineralizing composites reinforced with inert fillers. J Dent. doi: 10.1016/j.jdent.2016.03.008 PubMedGoogle Scholar
  22. 22.
    Emami N, Sjodahl M, Soderholm KJ (2005) How filler properties, filler fraction, sample thickness and light source affect light attenuation in particulate filled resin composites. Dent Mater 21(8):721–730. doi: 10.1016/j.dental.2005.01.002 CrossRefPubMedGoogle Scholar
  23. 23.
    Atai M, Motevasselian F (2009) Temperature rise and degree of photopolymerization conversion of nanocomposites and conventional dental composites. Clin Oral Investig 13(3):309–316. doi: 10.1007/s00784-008-0236-2 CrossRefPubMedGoogle Scholar
  24. 24.
    Clewell DH (1941) Scattering of light by pigment particles. J Opt Soc Am 31:512–517. doi: 10.1364/JOSA.31.000521 CrossRefGoogle Scholar
  25. 25.
    Pilo R, Cardash HS (1992) Post-irradiation polymerization of different anterior and posterior visible light-activated resin composites. Dent Mater 8(5):299–304. doi: 10.1016/0109-5641(92)90104-K CrossRefPubMedGoogle Scholar
  26. 26.
    Dickens SH, Stansbury JW, Choi KM, Floyd CJE (2003) Photopolymerization kinetics of methacrylate dental resins. Macromolecules 36(16):6043–6053. doi: 10.1021/ma021675k CrossRefGoogle Scholar
  27. 27.
    Moraes RR, Garcia JW, Barros MD, Lewis SH, Pfeifer CS, Liu J, Stansbury JW (2011) Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent Mater 27(6):509–519. doi: 10.1016/j.dental.2011.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Beun S, Bailly C, Dabin A, Vreven J, Devaux J, Leloup G (2009) Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio. Dent Mater 25(2):198–205. doi: 10.1016/j.dental.2008.06.001 CrossRefPubMedGoogle Scholar
  29. 29.
    Hadis M, Leprince JG, Shortall AC, Devaux J, Leloup G, Palin WM (2011) High irradiance curing and anomalies of exposure reciprocity law in resin-based materials. J Dent 39(8):549–557. doi: 10.1016/j.jdent.2011.05.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Berriot J, Lequeux F, Monnerie L, Montes H, Long D, Sotta P (2002) Filler–elastomer interaction in model filled rubbers, a 1H NMR study. J Non-Cryst Solids 307-310:719–724. doi: 10.1016/S0022-3093(02)01552-1 CrossRefGoogle Scholar
  31. 31.
    Ou YC, Yu ZZ, Vidal A, Donnet JB (1996) Effects of alkylation of silicas on interfacial interaction and molecular motions between silicas and rubbers. J Appl Polym Sci 59(8):1321–1328. doi: 10.1002/(SICI)1097-4628(19960222)59:8<1321::AID-APP16>3.0.CO;2-8 CrossRefGoogle Scholar
  32. 32.
    Wilson KS, Zhang K, Antonucci JM (2005) Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials 26(25):5095–5103. doi: 10.1016/j.biomaterials.2005.01.008 CrossRefPubMedGoogle Scholar
  33. 33.
    Ferracane JL, Berge HX, Condon JR (1998) In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 42(3):465–472. doi: 10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  34. 34.
    Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13(4):427–438. doi: 10.1007/s00784-009-0258-4 CrossRefPubMedGoogle Scholar
  35. 35.
    Skrtic D, Antonucci JM (2011) Bioactive polymeric composites for tooth mineral regeneration: physicochemical and cellular aspects. J Funct Biomater 2(3):271–307. doi: 10.3390/jfb2030271 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Skrtic D, Antonucci JM, Liu DW (2006) Ethoxylated bisphenol dimethacrylate-based amorphous calcium phosphate composites. Acta Biomater 2(1):85–94. doi: 10.1016/j.actbio.2005.10.004 CrossRefPubMedGoogle Scholar
  37. 37.
    Tarle Z, Knežević A, Matošević D, Škrtić D, Ristić M, Prskalo K, Musić S (2009) Degree of vinyl conversion in experimental amorphous calcium phosphate composites. J Mol Struct 924-926:161–165. doi: 10.1016/j.molstruc.2008.11.024 CrossRefGoogle Scholar
  38. 38.
    Watts DC (2005) Reaction kinetics and mechanics in photo-polymerised networks. Dent Mater 21(1):27–35. doi: 10.1016/j.dental.2004.10.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Steinhaus J, Hausnerova B, Haenel T, Grossgarten M, Moginger B (2014) Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA). Dent Mater 30(3):372–380. doi: 10.1016/j.dental.2013.12.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Private Dental PracticeZagrebCroatia
  2. 2.Department of Endodontics and Restorative Dentistry, School of Dental MedicineUniversity of ZagrebZagrebCroatia
  3. 3.Institute of PhysicsZagrebCroatia
  4. 4.Department of Physics and Biophysics, School of MedicineUniversity of ZagrebZagrebCroatia

Personalised recommendations