Clinical Oral Investigations

, Volume 21, Issue 1, pp 291–300 | Cite as

Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro

  • M. Esteves-OliveiraEmail author
  • N. M. Santos
  • H. Meyer-Lueckel
  • R. J. Wierichs
  • J. A. Rodrigues
Original Article



The aim of the study was to investigate the caries-preventive effect of newly developed fluoride and fluoride-free toothpastes specially designed for erosion prevention. The hypothesis was that these products might also show superior caries-inhibiting effect than regular fluoride toothpastes, since they were designed for stronger erosive acid challenges.

Materials and methods

Enamel specimens were obtained from bovine teeth and pre-demineralized (pH = 4.95/21 days) to create artificial caries lesions. Baseline mineral loss (ΔZB) and lesion depth (LDB) were determined using transversal microradiography (TMR). Ninety specimens with a median ΔZB (SD) of 6027 ± 1546 vol% × μm were selected and randomly allocated to five groups (n = 18). Treatments during pH-cycling (14 days, 4 × 60 min demineralization/day) were brushing 2×/day with AmF (1400 ppm F, anti-caries [AC]); AmF/NaF/SnCl2/Chitosan (700 ppm F/700 ppm F/3500 ppm Sn2+, anti-erosion [AE1]); NaF/KNO3 (1400 ppm F, anti-erosion [AE2]); nano-hydroxyapatite-containing (0 ppm F, [nHA]); and fluoride-free toothpastes (0 ppm F, negative control [NC]). Toothpaste slurries were prepared with mineral salt solution (1:3 wt/wt). After pH-cycling specimens presenting lesion, surface loss (mainly by NC and nHA) were discarded. For the remaining 77 specimens, new TMR analyses (ΔZE/LDE) were performed. Changes in mineral loss (ΔΔZ = ΔZB − ΔZE) and lesion depth (ΔLD = LDB − LDE) were calculated.


All toothpastes caused significantly less demineralization (lower ΔΔZ) than NC (p < 0.05, ANOVA) except for nHA. The fluoride toothpastes did not differ significantly regarding ΔΔZ and ΔLD (p > 0.05, ANOVA).

Conclusion/clinical relevance

While both anti-erosive and anti-caries toothpastes reduced mineral loss to a similar extent, the fluoride-free nano-hydroxyapatite-containing toothpaste seemed not to be suitable for inhibition of caries demineralization in vitro.


Enamel Erosion Toothpaste Fluoride Stannous Nano-hydroxyapatite 


Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.


The study was funded by both institutions involved and Mrs. Santos was granted a scholarship from the Science Without Borders (CSF) program from CNPq, Brazil (process number 238553/2012-4).

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Lippert F (2013) An introduction to toothpaste—its purpose, history and ingredients. Monogr Oral Sci 23:1–14. doi: 10.1159/000350456 CrossRefPubMedGoogle Scholar
  2. 2.
    Lynch RJ, Smith SR (2012) Remineralization agents—new and effective or just marketing hype? Adv Dent Res 24:63–67. doi: 10.1177/0022034512454295 CrossRefPubMedGoogle Scholar
  3. 3.
    Ganss C, Lussi A, Grunau O, Klimek J, Schlueter N (2011) Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion. Caries Res 45:581–589. doi: 10.1159/000334318 CrossRefPubMedGoogle Scholar
  4. 4.
    Tschoppe P, Zandim DL, Martus P, Kielbassa AM (2011) Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent 39:430–437. doi: 10.1016/j.jdent CrossRefPubMedGoogle Scholar
  5. 5.
    Najibfard K, Ramalingam K, Chedjieu I, Amaechi BT (2011) Remineralization of early caries by a nano-hydroxyapatite dentifrice. J Clin Dent 22:139–143PubMedGoogle Scholar
  6. 6.
    Comar LP, Souza BM, Gracindo LF, Buzalaf MA, Magalhaes AC (2013) Impact of experimental nano-HAP pastes on bovine enamel and dentin submitted to a pH cycling model. Braz Dent J 24:273–278. doi: 10.1590/0103-6440201302175 CrossRefPubMedGoogle Scholar
  7. 7.
    Souza BM, Comar LP, Vertuan M, Fernandes Neto C, Buzalaf MA, Magalhaes AC (2015) Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res 49:499–507. doi: 10.1159/000438466 CrossRefPubMedGoogle Scholar
  8. 8.
    Huang S, Gao S, Cheng L, Yu H (2011) Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res 45:460–468. doi: 10.1159/000331207 CrossRefPubMedGoogle Scholar
  9. 9.
    Huang SB, Gao SS, Yu HY (2009) Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater 4:034104. doi: 10.1088/1748-6041/4/3/034104 CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang M, He LB, Exterkate RA, Cheng L, Li JY, Ten Cate JM, Crielaard W, Deng DM (2015) Biofilm layers affect the treatment outcomes of NaF and nano-hydroxyapatite. J Dent Res 94:602–607. doi: 10.1177/0022034514565644 CrossRefPubMedGoogle Scholar
  11. 11.
    Ganss C, von Hinckeldey J, Tolle A, Schulze K, Klimek J, Schlueter N (2012) Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J Dent 40:1036–1043. doi: 10.1016/j.jdent.2012.08.005 CrossRefPubMedGoogle Scholar
  12. 12.
    Carvalho TS, Lussi A (2014) Combined effect of a fluoride-, stannous- and chitosan-containing toothpaste and stannous-containing rinse on the prevention of initial enamel erosion-abrasion. J Dent 42:450–459. doi: 10.1016/j.jdent.2014.01.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Hara AT, Kelly SA, Gonzalez-Cabezas C, Eckert GJ, Barlow AP, Mason SC, Zero DT (2009) Influence of fluoride availability of dentifrices on eroded enamel remineralization in situ. Caries Res 43:57–63. doi: 10.1159/000201591 CrossRefPubMedGoogle Scholar
  14. 14.
    Aykut-Yetkiner A, Attin T, Wiegand A (2014) Prevention of dentine erosion by brushing with anti-erosive toothpastes. J Dent 42:856–861. doi: 10.1016/j.jdent.2014.03.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Kato MT, Lancia M, Sales-Peres SH, Buzalaf MA (2010) Preventive effect of commercial desensitizing toothpastes on bovine enamel erosion in vitro. Caries Res 44:85–89. doi: 10.1159/000282668 CrossRefPubMedGoogle Scholar
  16. 16.
    Meyer-Lueckel H, Paris S (2008) Progression of artificial enamel caries lesions after infiltration with experimental light curing resins. Caries Res 42:117–124. doi: 10.1159/000118631 CrossRefPubMedGoogle Scholar
  17. 17.
    Buskes JA, Christoffersen J, Arends J (1985) Lesion formation and lesion remineralization in enamel under constant composition conditions. A new technique with applications. Caries Res 19:490–496CrossRefPubMedGoogle Scholar
  18. 18.
    Lippert F, Lynch RJ, Eckert GJ, Kelly SA, Hara AT, Zero DT (2011) In situ fluoride response of caries lesions with different mineral distributions at baseline. Caries Res 45:47–55. doi: 10.1159/000323846 CrossRefPubMedGoogle Scholar
  19. 19.
    Gerrard WA, Winter PJ (1986) Evaluation of toothpastes by their ability to assist rehardening of enamel in vitro. Caries Res 20:209–216CrossRefPubMedGoogle Scholar
  20. 20.
    Esteves-Oliveira M, Pasaporti C, Heussen N, Eduardo CP, Lampert F, Apel C (2011) Prevention of toothbrushing abrasion of acid-softened enamel by CO2 laser irradiation. J Dent 39:604–611. doi: 10.1016/j.jdent.2011.06.007 CrossRefPubMedGoogle Scholar
  21. 21.
    Ganss C, Schlueter N, Preiss S, Klimek J (2009) Tooth brushing habits in uninstructed adults–frequency, technique, duration and force. Clin Oral Investig 13:203–208. doi: 10.1007/s00784-008-0230-8 CrossRefPubMedGoogle Scholar
  22. 22.
    Tenuta LM, Cury JA (2013) Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. Monogr Oral Sci 23:108–124. doi: 10.1159/000350479 CrossRefPubMedGoogle Scholar
  23. 23.
    Meyer-Lueckel H, Wierichs RJ, Gninka B, Heldmann P, Dorfer CE, Paris S (2015) The effect of various model parameters on enamel caries lesions in a dose-response model in situ. J Dent 43:1261–1267. doi: 10.1016/j.jdent.2015.08.003 CrossRefPubMedGoogle Scholar
  24. 24.
    Angmar B, Carlstrom D, Glas JE (1963) Studies on the ultrastructure of dental enamel V. The mineralization of normal human enamel. I J Ultrastruct Res 8:12–23CrossRefPubMedGoogle Scholar
  25. 25.
    De Josselin de Jong E, ten Bosch JJ, Noordmans J (1987) Optimised microcomputer-guided quantitative microradiography on dental mineralised tissue slices. Phys Med Biol 32:887–899CrossRefPubMedGoogle Scholar
  26. 26.
    Arends J, Dijkman T, Christoffersen J (1987) Average mineral loss in dental enamel during demineralization. Caries Res 21:249–254CrossRefPubMedGoogle Scholar
  27. 27.
    Theuns HM, van Dijk JW, Driessens FC, Groeneveld A (1984) The surface layer during artificial carious lesion formation. Caries Res 18:97–102CrossRefPubMedGoogle Scholar
  28. 28.
    Magalhaes AC, Moron BM, Comar LP, Wiegand A, Buchalla W, Buzalaf MA (2009) Comparison of cross-sectional hardness and transverse microradiography of artificial carious enamel lesions induced by different demineralising solutions and gels. Caries Res 43:474–483. doi: 10.1159/000264685 CrossRefPubMedGoogle Scholar
  29. 29.
    Meyer-Lueckel H, Wierichs RJ, Schellwien T, Paris S (2015) Remineralizing efficacy of a CPP-ACP cream on enamel caries lesions in situ. Caries Res 49:56–62. doi: 10.1159/000363073 CrossRefPubMedGoogle Scholar
  30. 30.
    Amaechi BT, van Loveren C (2013) Fluorides and non-fluoride remineralization systems. Monogr Oral Sci 23:15–26. doi: 10.1159/000350458 CrossRefPubMedGoogle Scholar
  31. 31.
    Marinho VC, Higgins JP, Sheiham A and Logan S (2003) Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev:CD002278. doi:10.1002/14651858.CD002278Google Scholar
  32. 32.
    Zero DT (2006) Dentifrices, mouthwashes, and remineralization/caries arrestment strategies. BMC Oral Health 6(Supp 1):S9. doi: 10.1186/1472-6831-6-S1-S9 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wong MC, Clarkson J, Glenny AM, Lo EC, Marinho VC, Tsang BW, Walsh T, Worthington HV (2011) Cochrane reviews on the benefits/risks of fluoride toothpastes. J Dent Res 90:573–579. doi: 10.1177/0022034510393346 CrossRefPubMedGoogle Scholar
  34. 34.
    Arends J, Christoffersen J (1990) Nature and role of loosely bound fluoride in dental caries. J Dent Res 69:601–605 discussion 634-6CrossRefPubMedGoogle Scholar
  35. 35.
    Schlueter N, Hardt M, Lussi A, Engelmann F, Klimek J, Ganss C (2009) Tin-containing fluoride solutions as anti-erosive agents in enamel: an in vitro tin-uptake, tissue-loss, and scanning electron micrograph study. Eur J Oral Sci 117:427–434. doi: 10.1111/j.1600-0722.2009.00647.x CrossRefPubMedGoogle Scholar
  36. 36.
    Arnaud TM, de Barros NB, Diniz FB (2010) Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. J Dent 38:848–852. doi: 10.1016/j.jdent.2010.06.004 CrossRefPubMedGoogle Scholar
  37. 37.
    ten Cate JM, Duijsters PP (1982) Alternating demineralization and remineralization of artificial enamel lesions. Caries Res 16:201–210CrossRefPubMedGoogle Scholar
  38. 38.
    ten Cate JM, Buijs MJ, Miller CC, Exterkate RA (2008) Elevated fluoride products enhance remineralization of advanced enamel lesions. J Dent Res 87:943–947CrossRefPubMedGoogle Scholar
  39. 39.
    ten Cate JM, Exterkate RA, Buijs MJ (2006) The relative efficacy of fluoride toothpastes assessed with pH cycling. Caries Res 40:136–141CrossRefPubMedGoogle Scholar
  40. 40.
    Lippert F, Juthani K (2015) Fluoride dose-response of human and bovine enamel artificial caries lesions under pH-cycling conditions. Clin Oral Investig 19:1947–1954. doi: 10.1007/s00784-015-1436-1 CrossRefPubMedGoogle Scholar
  41. 41.
    Wiegand A, Begic M, Attin T (2006) In vitro evaluation of abrasion of eroded enamel by different manual, power and sonic toothbrushes. Caries Res 40:60–65. doi: 10.1159/000088908 CrossRefPubMedGoogle Scholar
  42. 42.
    Ganss C, Schlueter N, Hardt M, von Hinckeldey J, Klimek J (2007) Effects of toothbrushing on eroded dentine. Eur J Oral Sci 115:390–396. doi: 10.1111/j.1600-0722.2007.00466.x CrossRefPubMedGoogle Scholar
  43. 43.
    Vieira A, Overweg E, Ruben JL, Huysmans MC (2006) Toothbrush abrasion, simulated tongue friction and attrition of eroded bovine enamel in vitro. J Dent 34:336–342. doi: 10.1016/j.jdent.2005.07.010 CrossRefPubMedGoogle Scholar
  44. 44.
    ten Cate JM, Arends J (1978) Remineralization of artificial enamel lesions in vitro. II. Determination of activation energy and reaction order. Caries Res 12:213–222CrossRefPubMedGoogle Scholar
  45. 45.
    Arends J, Christoffersen J (1986) The nature of early caries lesions in enamel. J Dent Res 65:2–11CrossRefPubMedGoogle Scholar
  46. 46.
    Meyer-Lueckel H, Paris S, Kielbassa AM (2007) Surface layer erosion of natural caries lesions with phosphoric and hydrochloric acid gels in preparation for resin infiltration. Caries Res 41:223–230. doi: 10.1159/000099323 CrossRefPubMedGoogle Scholar
  47. 47.
    Featherstone JD, Mellberg JR (1981) Relative rates of progress of artificial carious lesions in bovine, ovine and human enamel. Caries Res 15:109–114CrossRefPubMedGoogle Scholar
  48. 48.
    Mellberg JR (1992) Hard-tissue substrates for evaluation of cariogenic and anti-cariogenic activity in situ. J Dent Res 71:913–919CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Esteves-Oliveira
    • 1
    Email author
  • N. M. Santos
    • 2
  • H. Meyer-Lueckel
    • 1
  • R. J. Wierichs
    • 1
  • J. A. Rodrigues
    • 2
  1. 1.Department of Operative Dentistry, Periodontology and Preventive DentistryRWTH Aachen UniversityAachenGermany
  2. 2.Department of Pediatric DentistryFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations