Advertisement

Clinical Oral Investigations

, Volume 21, Issue 1, pp 255–265 | Cite as

The effect of different collagen modifications for titanium and titanium nitrite surfaces on functions of gingival fibroblasts

  • U. Ritz
  • T. Nusselt
  • A. Sewing
  • T. Ziebart
  • K. Kaufmann
  • A. Baranowski
  • P.M. Rommens
  • Alexander Hofmann
Original Article

Abstract

Objectives

Targeted modifications of the bulk implant surfaces using bioactive agents provide a promising tool for improvement of the long-term bony and soft tissue integration of dental implants. In this study, we assessed the cellular responses of primary human gingival fibroblasts (HGF) to different surface modifications of titanium (Ti) and titanium nitride (TiN) alloys with type I collagen or cyclic-RGDfK-peptide in order to define a modification improving long-term implants in dental medicine.

Materials and methods

Employing Ti and TiN implants, we compared the performance of simple dip coating and anodic immobilization of type I collagen that provided collagen layers of two different thicknesses. HGF were seeded on the different coated implants, and adhesion, proliferation, and gene expression were analyzed.

Results

Although there were no strong differences in initial cell adhesion between the groups at 2 and 4 hours, we found that all surface modifications induced higher proliferation rates as compared to the unmodified controls. Consistently, gene expression levels of cell adhesion markers (focal adhesion kinase (FAK), integrin beta1, and vinculin), cell differentiation markers (FGFR1, TGFb-R1), extracellular protein markers (type I collagen, vimentin), and cytoskeletal protein marker aktinin-1 were consistently higher in all surface modification groups at two different time points of investigation as compared to the unmodified controls.

Conclusion

Our results indicate that simple dip coating of Ti and TiN with collagen is sufficient to induce in vitro cellular responses that are comparable to those of more reliable coating methods like anodic adsorption, chemical cross-linking, or RGD coating. TiN alloys do not possess any positive or adverse effects on HGF.

Clinical relevance

Our results demonstrate a simple, yet effective, method for collagen coating on titanium implants to improve the long term integration and stability of dental implants.

Keywords

Titanium Titanium nitride Collagen Surface modification RGD Gingival fibroblast 

Notes

Acknowledgments

All implant materials investigated in this study were manufactured and kindly provided by the Biomet Deutschland GmbH. We also gratefully acknowledge the financial support of this study provided by the Biomet Deutschland GmbH.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was supported by Biomet GmbH Deutschland, Berlin, Germany.

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Kasemo B, Lausmaa J (1988) Biomaterial and implant surfaces: on the role of cleanliness, contamination, and preparation procedures. J Biomed Mater Res 22:145–158CrossRefPubMedGoogle Scholar
  2. 2.
    Gronowicz G, McCarthy MB (1996) Response of human osteoblasts to implant materials: integrin-mediated adhesion. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 14:878–887. doi: 10.1002/jor.1100140606 CrossRefGoogle Scholar
  3. 3.
    Howlett CR, Evans MD, Walsh WR, Johnson G, Steele JG (1994) Mechanism of initial attachment of cells derived from human bone to commonly used prosthetic materials during cell culture. Biomaterials 15:213–222CrossRefPubMedGoogle Scholar
  4. 4.
    Kasemo B, Lausmaa J (1988) Biomaterial and implant surfaces: a surface science approach. The International journal of oral & maxillofacial implants 3:247–259Google Scholar
  5. 5.
    Beutner R, Michael J, Schwenzer B and Scharnweber D (2010) Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox. Journal of the Royal Society, Interface/the Royal Society 7 Suppl 1:S93-S105. doi:10.1098/rsif.2009.0418.focusGoogle Scholar
  6. 6.
    Heydecke G, Kohal R, Glaser R (1999) Optimal esthetics in single-tooth replacement with the re-implant system: a case report. The International journal of prosthodontics 12:184–189PubMedGoogle Scholar
  7. 7.
    Annunziata M, Oliva A, Basile MA, Giordano M, Mazzola N, Rizzo A, Lanza A, Guida L (2011) The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. J Dent 39:720–728. doi: 10.1016/j.jdent.2011.08.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Chien CC, Liu KT, Duh JG, Chang KW, Chung KH (2008) Effect of nitride film coatings on cell compatibility. Dental materials: official publication of the Academy of Dental Materials 24:986–993. doi: 10.1016/j.dental.2007.11.020 CrossRefGoogle Scholar
  9. 9.
    Scarano A, Piattelli M, Vrespa G, Caputi S, Piattelli A (2003) Bacterial adhesion on titanium nitride-coated and uncoated implants: an in vivo human study. The Journal of oral implantology 29:80–85. doi: 10.1563/1548-1336(2003)029<0080:BAOTNA>2.3.CO;2 CrossRefPubMedGoogle Scholar
  10. 10.
    Piscanec S, Ciacchi LC, Vesselli E, Comelli G, Sbaizero O, Meriani S, De Vita A (2004) Bioactivity of TiN-coated titanium implants. Acta Mater 52:1237–1245. doi: 10.1016/j.actamat.2003.11.020 CrossRefGoogle Scholar
  11. 11.
    Buser D, Weber HP, Donath K, Fiorellini JP, Paquette DW, Williams RC (1992) Soft tissue reactions to non-submerged unloaded titanium implants in beagle dogs. J Periodontol 63:225–235. doi: 10.1902/jop.1992.63.3.225 CrossRefPubMedGoogle Scholar
  12. 12.
    Listgarten MA, Lang NP, Schroeder HE, Schroeder A (1991) Periodontal tissues and their counterparts around endosseous implants [corrected and republished with original paging, article orginally printed in Clin Oral Implants Res 1991 Jan-Mar; 2(1):1-19. Clinical oral implants research 2:1–19CrossRefPubMedGoogle Scholar
  13. 13.
    Sculean A, Gruber R, Bosshardt DD (2014) Soft tissue wound healing around teeth and dental implants. J Clin Periodontol 41(Suppl 15):S6–22. doi: 10.1111/jcpe.12206 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Y, Zhang Y, Miron RJ (2015) Health, maintenance, and recovery of soft tissues around implants. Clinical implant dentistry and related research. doi: 10.1111/cid.12343 Google Scholar
  15. 15.
    Jin C, Ren LF, Ding HZ, Shi GS, Lin HS, Zhang F (2012) Enhanced attachment, proliferation, and differentiation of human gingival fibroblasts on titanium surface modified with biomolecules. Journal of biomedical materials research Part B, Applied biomaterials 100:2167–2177. doi: 10.1002/jbm.b.32784 CrossRefPubMedGoogle Scholar
  16. 16.
    Chua PH, Neoh KG, Kang ET, Wang W (2008) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29:1412–1421. doi: 10.1016/j.biomaterials.2007.12.019 CrossRefPubMedGoogle Scholar
  17. 17.
    Le Guillou-Buffello D, Bareille R, Gindre M, Sewing A, Laugier P, Amedee J (2008) Additive effect of RGD coating to functionalized titanium surfaces on human osteoprogenitor cell adhesion and spreading. Tissue Eng A 14:1445–1455. doi: 10.1089/ten.tea.2007.0292 CrossRefGoogle Scholar
  18. 18.
    Sverzut AT, Crippa GE, Morra M, de Oliveira PT, Beloti MM, Rosa AL (2012) Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomed Mater 7:035007. doi: 10.1088/1748-6041/7/3/035007 CrossRefPubMedGoogle Scholar
  19. 19.
    Li J, Zhang K, Chen H, Liu T, Yang P, Zhao Y, Huang N (2014) A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. Materials science & engineering C, Materials for biological applications 38:235–243. doi: 10.1016/j.msec.2014.02.008 CrossRefGoogle Scholar
  20. 20.
    Protivinsky J, Appleford M, Strnad J, Helebrant A, Ong JL (2007) Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. The International journal of oral & maxillofacial implants 22:542–550Google Scholar
  21. 21.
    Beutner R, Michael J, Forster A, Schwenzer B, Scharnweber D (2009) Immobilization of oligonucleotides on titanium based materials by partial incorporation in anodic oxide layers. Biomaterials 30:2774–2781. doi: 10.1016/j.biomaterials.2009.01.047 CrossRefPubMedGoogle Scholar
  22. 22.
    Li B, Li Y, Li J, Fu X, Li H, Wang H, Xin S, Zhou L, Liang C, Li C (2014) Influence of nanostructures on the biological properties of Ti implants after anodic oxidation. Journal of materials science Materials in medicine 25:199–205. doi: 10.1007/s10856-013-5064-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Wolf-Brandstetter C, Lode A, Hanke T, Scharnweber D, Worch H (2006) Influence of modified extracellular matrices on TI6AL4V implants on binding and release of VEGF. Journal of biomedical materials research Part A 79:882–894. doi: 10.1002/jbm.a.30826 CrossRefPubMedGoogle Scholar
  24. 24.
    Groessner-Schreiber B, Neubert A, Muller WD, Hopp M, Griepentrog M, Lange KP (2003) Fibroblast growth on surface-modified dental implants: an in vitro study. Journal of biomedical materials research Part A 64:591–599. doi: 10.1002/jbm.a.10417 CrossRefPubMedGoogle Scholar
  25. 25.
    Grossner-Schreiber B, Herzog M, Hedderich J, Duck A, Hannig M, Griepentrog M (2006) Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: an in vitro study. Clinical oral implants research 17:736–745. doi: 10.1111/j.1600-0501.2006.01277.x CrossRefPubMedGoogle Scholar
  26. 26.
    Rossler S, Scharnweber D, Worch H (1999) Immobilization of type I collagen on the alloy Ti6A14V. J Mater Sci Lett 18:577–579. doi: 10.1023/A:1006647116608 CrossRefGoogle Scholar
  27. 27.
    Auernheimer J, Zukowski D, Dahmen C, Kantlehner M, Enderle A, Goodman SL, Kessler H (2005) Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. Chembiochem: a European journal of chemical biology 6:2034–2040. doi: 10.1002/cbic.200500031 CrossRefPubMedGoogle Scholar
  28. 28.
    Brendel C, Muller-Kuller U, Schultze-Strasser S, Stein S, Chen-Wichmann L, Krattenmacher A, Kunkel H, Dillmann A, Antoniou MN, Grez M (2012) Physiological regulation of transgene expression by a lentiviral vector containing the A2UCOE linked to a myeloid promoter. Gene Ther 19:1018–1029. doi: 10.1038/gt.2011.167 CrossRefPubMedGoogle Scholar
  29. 29.
    Kim H, Murakami H, Chehroudi B, Textor M, Brunette DM (2006) Effects of surface topography on the connective tissue attachment to subcutaneous implants. The International journal of oral & maxillofacial implants 21:354–365Google Scholar
  30. 30.
    Hamilton DW, Brunette DM (2005) “Gap guidance” of fibroblasts and epithelial cells by discontinuous edged surfaces. Exp Cell Res 309:429–437. doi: 10.1016/j.yexcr.2005.06.015 CrossRefPubMedGoogle Scholar
  31. 31.
    Hamilton V, Yuan Y, Rigney DA, Puckett AD, Ong JL, Yang Y, Elder SH, Bumgardner JD (2006) Characterization of chitosan films and effects on fibroblast cell attachment and proliferation. Journal of materials science Materials in medicine 17:1373–1381. doi: 10.1007/s10856-006-0613-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Kundu AK, Khatiwala CB, Putnam AJ (2009) Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates. Tissue Eng A 15:273–283. doi: 10.1089/ten.tea.2008.0055 CrossRefGoogle Scholar
  33. 33.
    van den Dolder J, Jansen JA (2007) The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium. Journal of biomedical materials research Part A 83:712–719. doi: 10.1002/jbm.a.31428 CrossRefPubMedGoogle Scholar
  34. 34.
    Tsuchiya S, Honda MJ, Shinohara Y, Saito M, Ueda M (2008) Collagen type I matrix affects molecular and cellular behavior of purified porcine dental follicle cells. Cell Tissue Res 331:447–459. doi: 10.1007/s00441-007-0532-1 CrossRefPubMedGoogle Scholar
  35. 35.
    Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397. doi: 10.1634/stemcells.2006-0253 CrossRefPubMedGoogle Scholar
  36. 36.
    Marin-Pareja N, Salvagni E, Guillem-Marti J, Aparicio C, Ginebra MP (2014) Collagen-functionalised titanium surfaces for biological sealing of dental implants: effect of immobilisation process on fibroblasts response. Colloids and surfaces B, Biointerfaces 122:601–610. doi: 10.1016/j.colsurfb.2014.07.038 CrossRefPubMedGoogle Scholar
  37. 37.
    Guida L, Oliva A, Basile MA, Giordano M, Nastri L, Annunziata M (2013) Human gingival fibroblast functions are stimulated by oxidized nano-structured titanium surfaces. J Dent 41:900–907. doi: 10.1016/j.jdent.2013.07.009 CrossRefPubMedGoogle Scholar
  38. 38.
    Hauser J, Koeller M, Bensch S, Halfmann H, Awakowicz P, Steinau HU, Esenwein S (2010) Plasma mediated collagen-I-coating of metal implant materials to improve biocompatibility. Journal of biomedical materials research Part A 94:19–26. doi: 10.1002/jbm.a.32672 CrossRefPubMedGoogle Scholar
  39. 39.
    Park BS, Heo SJ, Kim CS, Oh JE, Kim JM, Lee G, Park WH, Chung CP, Min BM (2005) Effects of adhesion molecules on the behavior of osteoblast-like cells and normal human fibroblasts on different titanium surfaces. Journal of biomedical materials research Part A 74:640–651. doi: 10.1002/jbm.a.30326 CrossRefPubMedGoogle Scholar
  40. 40.
    Tosatti S, Schwartz Z, Campbell C, Cochran DL, VandeVondele S, Hubbell JA, Denzer A, Simpson J, Wieland M, Lohmann CH, Textor M, Boyan BD (2004) RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. Journal of biomedical materials research Part A 68:458–472. doi: 10.1002/jbm.a.20082 CrossRefPubMedGoogle Scholar
  41. 41.
    Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF (1999) RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 20:2323–2331CrossRefPubMedGoogle Scholar
  42. 42.
    Schuler M, Owen GR, Hamilton DW, de Wild M, Textor M, Brunette DM, Tosatti SG (2006) Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials 27:4003–4015. doi: 10.1016/j.biomaterials.2006.03.009 CrossRefPubMedGoogle Scholar
  43. 43.
    Clem WC, Konovalov VV, Chowdhury S, Vohra YK, Catledge SA, Bellis SL (2006) Mesenchymal stem cell adhesion and spreading on microwave plasma-nitrided titanium alloy. Journal of biomedical materials research Part A 76:279–287. doi: 10.1002/jbm.a.30557 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sartori M, Giavaresi G, Parrilli A, Ferrari A, Aldini NN, Morra M, Cassinelli C, Bollati D, Fini M (2015) Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. Int Orthop 39:2041–2052. doi: 10.1007/s00264-015-2926-0 CrossRefPubMedGoogle Scholar
  45. 45.
    Stadlinger B, Bierbaum S, Grimmer S, Schulz MC, Kuhlisch E, Scharnweber D, Eckelt U, Mai R (2009) Increased bone formation around coated implants. J Clin Periodontol 36:698–704. doi: 10.1111/j.1600-051X.2009.01435.x CrossRefPubMedGoogle Scholar
  46. 46.
    Ao H, Xie Y, Tan H, Yang S, Li K, Wu X, Zheng X, Tang T (2013) Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings. Journal of the Royal Society, Interface/the Royal Society 10:20130070. doi: 10.1098/rsif.2013.0070 CrossRefGoogle Scholar
  47. 47.
    Beurden HE, Snoek PA, Hoff JW, Torensma R, Maltha JC and Kuijpers-Jagtman AM (2006) In vitro migration and adhesion of fibroblasts from different phases of palatal wound healing. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society 14:66–71. doi:10.1111/j.1743–6109.2005.00090.xGoogle Scholar
  48. 48.
    Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • U. Ritz
    • 1
  • T. Nusselt
    • 1
  • A. Sewing
    • 2
  • T. Ziebart
    • 3
  • K. Kaufmann
    • 4
  • A. Baranowski
    • 1
  • P.M. Rommens
    • 1
  • Alexander Hofmann
    • 1
  1. 1.Department of Orthopedics and TraumatologyUniversity Medical Centre of the Johannes Gutenberg UniversityMainzGermany
  2. 2.Biomet Deutschland GmbHBerlinGermany
  3. 3.Department of Oral, Maxillofacial and Plastic SurgeryUniversity Medical Centre of the Johannes Gutenberg UniversityMainzGermany
  4. 4.Georg-Speyer-HausFrankfurtGermany

Personalised recommendations