Advertisement

Clinical Oral Investigations

, Volume 20, Issue 9, pp 2507–2513 | Cite as

Pre-coating deproteinized bovine bone mineral (DBBM) with bone-conditioned medium (BCM) improves osteoblast migration, adhesion, and differentiation in vitro

  • Jordi Caballé-Serrano
  • Masako Fujioka-Kobayashi
  • Dieter D. Bosshardt
  • Reinhard Gruber
  • Daniel Buser
  • Richard J. MironEmail author
Original Article

Abstract

Objectives

Autogenous bone grafting has remained the gold standard for bone augmentation procedures with ability to release growth factors to the surrounding microenvironment. Recent investigations have characterized these specific growth factors released by autogenous bone chips with further isolation into a “bone-conditioned medium” (BCM). The aim of the present investigation was to utilize autologous growth factors from bone chips (BCM) in combination with deproteinized bovine bone mineral (DBBM) and investigate the ability for BCM to enhance osteoblast behavior.

Materials and methods

Mouse ST2 cells were seeded on (1) DBBM particles alone or (2) DBBM + BCM. Thereafter, samples were compared for cell recruitment, adhesion, proliferation, and real-time PCR for osteoblast differentiation markers including Runx2, collagen 1 alpha 2 (COL1A2), alkaline phosphatase (ALP), and osteocalcin (OCN). Alizarin red staining was used to assess mineralization.

Results

Coating BCM on DBBM particles improved cell migration of ST2 cells and significantly enhanced a 2-fold increase in cell adhesion. While no significant increase in cell proliferation was observed, BCM significantly increased mRNA levels of COL1A2, ALP, and OCN at 3 days post seeding. Furthermore, a 3-fold increase in alizarin red staining was observed on DBBM particles pre-coated with BCM.

Conclusion

Pre-coating DBBM with BCM enhanced the osteoconductive properties of DBBM by mediating osteoblast recruitment, attachment, and differentiation towards bone-forming osteoblasts. Future animal study is necessary to further characterize the added benefit of BCM as an autogenous growth factor source for combination therapies.

Clinical relevance

The application of BCM in combination with biomaterials may serve as an autogenous growth factor source for bone regeneration.

Keywords

Bone-conditioned media Guided bone regeneration Bone grafting Barrier membranes Growth factors 

Notes

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

DBBM particles were kindly supplied by Geistlich AG, Switzerland. All authors declare no conflict of interest.

Funding

This work was fully funded by the Oral Cell Biology Laboratory at the University of Bern, Switzerland.

Informed consent

For this type of study, informed consent was not required.

References

  1. 1.
    Stern A, Barzani G (2015) Autogenous bone harvest for implant reconstruction. Dent Clin N Am 59:409–420. doi: 10.1016/j.cden.2014.10.011 CrossRefPubMedGoogle Scholar
  2. 2.
    Miron RJ, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2011) Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res 90:1428–1433. doi: 10.1177/0022034511422718 CrossRefPubMedGoogle Scholar
  3. 3.
    Jensen SS, Bosshardt DD, Gruber R, Buser D (2014) Long-term stability of contour augmentation in the esthetic zone: histologic and histomorphometric evaluation of 12 human biopsies 14 to 80 months after augmentation. J Periodontol 85:1549–1556. doi: 10.1902/jop.2014.140182 CrossRefPubMedGoogle Scholar
  4. 4.
    Buser D, Chappuis V, Kuchler U, Bornstein MM, Wittneben JG, Buser R, Cavusoglu Y, Belser UC (2013) Long-term stability of early implant placement with contour augmentation. J Dent Res 92:176s–182s. doi: 10.1177/0022034513504949 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2013) Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res 15:481–489. doi: 10.1111/j.1708-8208.2012.00440.x CrossRefPubMedGoogle Scholar
  6. 6.
    Brolese E, Buser D, Kuchler U, Schaller B, Gruber R (2014) Human bone chips release of sclerostin and FGF-23 into the culture medium: an in vitro pilot study. Clin Oral Implants Res. doi: 10.1111/clr.12432 PubMedGoogle Scholar
  7. 7.
    Caballe-Serrano J, Bosshardt DD, Buser D, Gruber R (2014) Proteomic analysis of porcine bone-conditioned medium. Int J Oral Maxillofac Implants 29:1208–115d. doi: 10.11607/jomi.3708 CrossRefPubMedGoogle Scholar
  8. 8.
    Caballe-Serrano J, Schuldt Filho G, Bosshardt DD, Gargallo-Albiol J, Buser D, Gruber R (2015) Conditioned medium from fresh and demineralized bone enhances osteoclastogenesis in murine bone marrow cultures. Clin Oral Implants Res. doi: 10.1111/clr.12573 PubMedGoogle Scholar
  9. 9.
    Sawada K, Caballe-Serrano J, Schuldt Filho G, Bosshardt DD, Schaller B, Buser D, Gruber R (2015) Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium. Int J Oral Maxillofac Surg. doi: 10.1016/j.ijom.2015.03.012 PubMedGoogle Scholar
  10. 10.
    Schuldt Filho G, Caballe-Serrano J, Sawada K, Bosshardt DD, Aurelio Bianchini M, Buser D and Gruber R (2015) Conditioned medium of demineralized freeze-dried bone activates gene expression in periodontal fibroblasts in vitro. J Periodontol:1–14. doi:  10.1902/jop.2015.140676
  11. 11.
    Peng J, Nemec M, Brolese E, Bosshardt DD, Schaller B, Buser D, Gruber R (2014) Bone-conditioned medium Inhibits osteogenic and adipogenic differentiation of mesenchymal cells in vitro. Clin Implant Dent Relat Res. doi: 10.1111/cid.12200 PubMedGoogle Scholar
  12. 12.
    Filho GS, Caballe-Serrano J, Sawada K, Bosshardt DD, Bianchini MA, Buser D, Gruber R (2015) Conditioned medium of demineralized freeze-dried bone activates gene expression in periodontal fibroblasts in vitro. J Periodontol 86:827–834. doi: 10.1902/jop.2015.140676 CrossRefPubMedGoogle Scholar
  13. 13.
    Zimmermann M, Caballe-Serrano J, Bosshardt DD, Ankersmit HJ, Buser D, Gruber R (2015) Bone-conditioned medium changes gene expression in bone-derived fibroblasts. Int J Oral Maxillofac Implants 30:953–958. doi: 10.11607/jomi.4060 CrossRefPubMedGoogle Scholar
  14. 14.
    Miron RJ, Bosshardt DD, Hedbom E, Zhang Y, Haenni B, Buser D, Sculean A (2012) Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation. J Periodontol 83:936–947. doi: 10.1902/jop.2011.110480 CrossRefPubMedGoogle Scholar
  15. 15.
    Miron RJ, Bosshardt DD, Zhang Y, Buser D, Sculean A (2013) Gene array of primary human osteoblasts exposed to enamel matrix derivative in combination with a natural bone mineral. Clin Oral Investig 17:405–410. doi: 10.1007/s00784-012-0742-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Miron RJ, Saulacic N, Buser D, Iizuka T, Sculean A (2013) Osteoblast proliferation and differentiation on a barrier membrane in combination with BMP2 and TGFbeta1. Clin Oral Investig 17:981–988. doi: 10.1007/s00784-012-0764-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Jung RE, Glauser R, Scharer P, Hammerle CH, Sailer HF, Weber FE (2003) Effect of rhBMP-2 on guided bone regeneration in humans. Clin Oral Implants Res 14:556–568CrossRefPubMedGoogle Scholar
  18. 18.
    Wikesjo UM, Qahash M, Thomson RC, Cook AD, Rohrer MD, Wozney JM, Hardwick WR (2003) Space-providing expanded polytetrafluoroethylene devices define alveolar augmentation at dental implants induced by recombinant human bone morphogenetic protein 2 in an absorbable collagen sponge carrier. Clin Implant Dent Relat Res 5:112–123CrossRefPubMedGoogle Scholar
  19. 19.
    Donos N, Glavind L, Karring T, Sculean A (2004) Clinical evaluation of an enamel matrix derivative and a bioresorbable membrane in the treatment of degree III mandibular furcation involvement: a series of nine patients. Int J Periodontics Restorative Dent 24:362–369PubMedGoogle Scholar
  20. 20.
    Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE (2003) Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J Periodontol 74:1282–1292. doi: 10.1902/jop.2003.74.9.1282 CrossRefPubMedGoogle Scholar
  21. 21.
    Kitamura M, Akamatsu M, Machigashira M, Hara Y, Sakagami R, Hirofuji T, Hamachi T, Maeda K, Yokota M, Kido J, Nagata T, Kurihara H, Takashiba S, Sibutani T, Fukuda M, Noguchi T, Yamazaki K, Yoshie H, Ioroi K, Arai T, Nakagawa T, Ito K, Oda S, Izumi Y, Ogata Y, Yamada S, Shimauchi H, Kunimatsu K, Kawanami M, Fujii T, Furuichi Y, Furuuchi T, Sasano T, Imai E, Omae M, Yamada S, Watanuki M, Murakami S (2011) FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res 90:35–40. doi: 10.1177/0022034510384616 CrossRefPubMedGoogle Scholar
  22. 22.
    Anusaksathien O, Giannobile WV (2002) Growth factor delivery to re-engineer periodontal tissues. Curr Pharm Biotechnol 3:129–139CrossRefPubMedGoogle Scholar
  23. 23.
    Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res 93:335–345. doi: 10.1177/0022034513518561 CrossRefPubMedGoogle Scholar
  24. 24.
    Rocque BG, Kelly MP, Miller JH, Li Y, Anderson PA (2014) Bone morphogenetic protein-associated complications in pediatric spinal fusion in the early postoperative period: an analysis of 4658 patients and review of the literature. J Neurosurg Pediatr 14:635–643. doi: 10.3171/2014.8.peds13665 CrossRefPubMedGoogle Scholar
  25. 25.
    Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg: Official Journal of the American Association of Oral and Maxillofacial Surgeons 62:489–496CrossRefGoogle Scholar
  26. 26.
    Borie E, Olivi DG, Orsi IA, Garlet K, Weber B, Beltran V, Fuentes R (2015) Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med 8:7922–7929PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zimmermann M, Caballe-Serrano J, Bosshardt DD, Ankersmit HJ, Buser D and Gruber R (2015) Bone-conditioned medium changes gene expression in bone-derived fibroblasts. Int J Oral Maxillofac ImplantsGoogle Scholar
  28. 28.
    Schwartz Z, Mellonig JT, Carnes DL Jr, de la Fontaine J, Cochran DL, Dean DD, Boyan BD (1996) Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol 67:918–926. doi: 10.1902/jop.1996.67.9.918
  29. 29.
    Schwartz Z, Somers A, Mellonig JT, Carnes DL Jr, Dean DD, Cochran DL, Boyan BD (1998) Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol 69:470–478. doi: 10.1902/jop.1998.69.4.470

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jordi Caballé-Serrano
    • 1
    • 2
    • 3
  • Masako Fujioka-Kobayashi
    • 4
    • 5
  • Dieter D. Bosshardt
    • 6
  • Reinhard Gruber
    • 7
  • Daniel Buser
    • 3
  • Richard J. Miron
    • 1
    Email author
  1. 1.Laboratory of Oral Cell Biology, School of Dental MedicineUniversity of BernBernSwitzerland
  2. 2.Department of Oral and MaxilloFacial Surgery, School of Dental MedicineUniversitat Internacional de CatalunyaBarcelonaSpain
  3. 3.Department of Oral Surgery and Stomatology, School of Dental MedicineUniversity of BernBernSwitzerland
  4. 4.Department of Cranio-Maxillofacial SurgeryBern University Hospital, InselspitalBernSwitzerland
  5. 5.Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
  6. 6.Laboratory of Oral Histology, School of Dental MedicineUniversity of BernBernSwitzerland
  7. 7.Department of Oral BiologyMedical University of ViennaViennaAustria

Personalised recommendations