Clinical Oral Investigations

, Volume 20, Issue 9, pp 2411–2420 | Cite as

Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces

  • Raquel OsorioEmail author
  • Inmaculada Cabello
  • Antonio L. Medina-Castillo
  • Estrella Osorio
  • Manuel Toledano
Original Article



Demineralized collagen fibers at the hybrid layer are susceptible to degradation. Remineralization may aid to improve bond longevity.


The aim of the present study was to infiltrate zinc and calcium-loaded polymeric nanoparticles into demineralized dentin to facilitate hybrid layer remineralization.

Materials and methods

Zinc or calcium-loaded polymeric nanoparticles were infiltrated into etched dentin, and Single Bond Adhesive was applied. Bond strength was tested after 24 h and 6 months storage. Nanomechanical properties, dye-assisted confocal laser microscopy, and Masson’s trichrome staining evaluation were performed to assess for the hybrid layer morphology, permeability, and remineralization ability after 24 h and 3 months. Data were analyzed by ANOVA and Student–Newman–Keuls multiple comparisons tests (p < 0.05).


Immediate bond strength was not affected by nanoparticles infiltration (25 to 30 MPa), while after 6 months, bond strengths were maintained (22 to 24 MPa). After 3 months, permeability occurred only in specimens in which nanoparticles were not infiltrated. Dentin remineralization, at the bottom of the hybrid layer, was observed in all groups. After microscopy analysis, zinc-loaded nanoparticles were shown to facilitate calcium deposition throughout the entire hybrid layer. Young’s modulus at the hybrid layer increased from 2.09 to 3.25 GPa after 3 months, in specimens with zinc nanoparticles; meanwhile, these values were reduced from 1.66 to 0.49 GPa, in the control group.


Infiltration of polymeric nanoparticles into demineralized dentin increased long-term bond strengths. Zinc-loaded nanoparticles facilitate dentin remineralization within the complete resin–dentin interface.

Clinical relevance

Resin–dentin bond longevity and dentin remineralization at the hybrid layer were facilitated by zinc-loaded nanoparticles.


Remineralization Zinc Nanopolymers Dentin Hybrid layer Adhesives 



This work was supported by a grant, MINECO/FEDER MAT2014-52036-P. Authors do not have a financial relationship with the organization that sponsored the research.

Compliance with ethical standards

Ethical approval

All procedures performed in the present study, involving human participants, were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.


This study was funded by the Ministerio Español de Economía y Competitividad, grant number MINECO/FEDER MAT2014-52036-P. Authors do not have a financial relationship with the organization that sponsored the research.

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR (2011) Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 90:953–968. doi: 10.1177/0022034510391799 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sauro S, Osorio R, Watson TF, Toledano M (2012) Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface. J Mater Sci Mater Med 23:1521–1532. doi: 10.1007/s10856-012-4606-6 CrossRefPubMedGoogle Scholar
  3. 3.
    Osorio R, Yamauti M, Sauro S, Watson TF, Toledano M (2014) Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement. J Endod 40:1840–1845. doi: 10.1016/j.joen.2014.06.016 CrossRefPubMedGoogle Scholar
  4. 4.
    Sauro S, Osorio R, Osorio E, Watson TF, Toledano M (2013) Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. J Biomater Sci Polym Ed 24:940–956. doi: 10.1080/09205063.2012.727377 CrossRefPubMedGoogle Scholar
  5. 5.
    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. doi: 10.1016/j.biomaterials.2011.01.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Kinney JH, Habelitz S, Marshall SJ, Marshall GW (2003) The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res 82:957–961. doi: 10.1177/154405910308201204 CrossRefPubMedGoogle Scholar
  7. 7.
    Thompson VP, Watson TF, Marshall GW Jr, Blackman BR, Stansbury JW, Schadler LS, Pearson RA, Libanori R (2013) Outside-the-(cavity-prep)-box thinking. Adv Dent Res 25:24–32. doi: 10.1177/0022034513502207 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Osorio R, Osorio E, Medina-Castillo AL, Toledano M (2014) Polymer nanocarriers for dentin adhesion. J Dent Res 93:1258–1263. doi: 10.1177/0022034514551608 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Leonor IB, Balas F, Kawashita M, Reis RL, Kokubo T, Nakamura T (2009) Biomimetic apatite deposition on polymeric microspheres treated with a calcium silicate solution. J Biomed Mat Res B Appl Biomat 91:239–247. doi: 10.1002/jbm.b.31395 CrossRefGoogle Scholar
  10. 10.
    Wu C, Zhang Y, Fan W, Ke X, Hu X, Zhou Y, Xiao Y (2011) CaSiO3 microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres. J Biomed Mater Res Part A 98A:122–131. doi: 10.1002/jbm.a.33092 CrossRefGoogle Scholar
  11. 11.
    Musyanovych A, Landfester K (2014) Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci 14:458–477. doi: 10.1002/mabi.201300551 CrossRefPubMedGoogle Scholar
  12. 12.
    Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley DH, Tay FR, Toledano M (2011) Zinc reduces collagen degradation in demineralized human dentin explants. J Dent 39:148–153. doi: 10.1016/j.jdent.2010.11.005 CrossRefPubMedGoogle Scholar
  13. 13.
    Lynch RJ, Churchley D, Butler A, Kearns S, Thomas GV, Badrock TC, Cooper L, Higham SM (2011) Effects of zinc and fluoride on the remineralisation of artificial carious lesions under simulated plaque fluid conditions. Caries Res 45:313–322. doi: 10.1159/000324804 CrossRefPubMedGoogle Scholar
  14. 14.
    Sauro S, Osorio R, Watson TF, Toledano M (2015) Influence of phosphoproteins’ biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems. Dent Mat 31:759–777. doi: 10.1016/ CrossRefGoogle Scholar
  15. 15.
    Profeta AC, Mannocci F, Foxton R, Watson TF, Feitosa VP, De Carlo B, Mongiorgi R, Valdré G, Sauro S (2013) Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces. Dent Mater 29:729–741. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  16. 16.
    Toledano M, Aguilera FS, Osorio E, Cabello I, Toledano-Osorio M, Osorio R (2015) Self-etching zinc-doped adhesives improve the potential of caries-affected dentin to be functionally remineralized. Biointerphases 15;10:031002. doi:10.1116/1.4926442.Google Scholar
  17. 17.
    Toledano M, Aguilera FS, Osorio E, Cabello I, Osorio R (2014) Microanalysis of thermal-induced changes at the resin-dentin interface. Microsc Microanal 20:1218–1233. doi: 10.1017/S1431927614000944 CrossRefPubMedGoogle Scholar
  18. 18.
    Tay FR, Carvalho RM, Yiu CK, King NM, Zhang Y, Agee K, Bouillaguet S, Pashley DH (2000) Mechanical disruption of dentin collagen fibrils during resin-dentin bond testing. J Adhes Dent 2:175–192PubMedGoogle Scholar
  19. 19.
    Bertassoni LE, Habelitz S, Pugach M, Soares PC, Marshall SJ, Marshall GW Jr (2010) Evaluation of surface structural and mechanical changes following remineralization of dentin. Scanning 32:312–319. doi: 10.1002/sca.20199 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Besinis A, van Noort R, Martin N (2012) Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater 28:1012–1023. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  21. 21.
    Besinis A, van Noort R, Martin N (2014) Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles. Dent Mater 30:249–262. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  22. 22.
    Li J, Yang J, Li J, Chen L, Liang K, Wu W, Chen X, Li J (2013) Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. Biomaterials 34:6738–6747. doi: 10.1016/j.biomaterials.2013.05.046 CrossRefPubMedGoogle Scholar
  23. 23.
    Song J, Malathong V, Bertozzi CR (2005) Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J Am Chem Soc 16;127(10):3366–3372. doi:10.1021/ja043776zGoogle Scholar
  24. 24.
    Toledano M, Osorio E, Cabello I, Osorio R (2014b) Early dentine remineralisation: morpho-mechanical assessment. J Dent 42:384–394. doi: 10.1016/j.jdent.2014.01.012 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang Y, Yuan Y, Liu C (2008) Fluorescent labeling of nanometer hydroxyapatite. J Mater Sci Technol 24:187–191Google Scholar
  26. 26.
    Rahn BA, Perren SM (1971) Xylenol orange, a fluorochrome useful in polychrome sequential labeling of calcifying tissues. Stain Technol 46:125–129CrossRefPubMedGoogle Scholar
  27. 27.
    Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, Tay FR (2014) Biomimetic remineralization of dentin. Dent Mater 30:77–96. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  28. 28.
    Kim J, Mai S, Carrilho MR, Yiu CK, Pashley DH, Tay FR (2010) An all-in-one adhesive does not etch beyond hybrid layers. J Dent Res 89:482–487. doi: 10.1177/0022034510363665 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stansbury JW, Dickens SH (2001) Network formation and compositional drift during photo-initiated copolymerization of dimethacrylate monomers. Polymer 42:6363–6369. doi: 10.1016/S0032-3861(01)00106-9 CrossRefGoogle Scholar
  30. 30.
    Bertassoni LE, Habelitz S, Marshall SJ, Marshall GW (2011) Mechanical recovery of dentin following remineralization in vitro—an indentation study. J Biomech 44:176–181. doi: 10.1016/j.jbiomech.2010.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Osorio R, Cabello I, Toledano M (2014) Bioactivity of zinc-doped dental adhesives. J Dent 42:403–412. doi: 10.1016/j.jdent.2013.12.006 CrossRefPubMedGoogle Scholar
  32. 32.
    Toledano M, Sauro S, Cabello I, Watson T, Osorio R (2013) A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29:142–152. doi: 10.1016/ CrossRefGoogle Scholar
  33. 33.
    De Munck J, Mine A, Vivan Cardoso M, Van Landuyt KL, Lührs AK, Poitevin A, Hanabusa M, Kuboki T, Van Meerbeek B (2013) Hydrolytic stability of three-step etch-and-rinse adhesives in occlusal class-I cavities. Clin Oral Investig 17:1911–1918. doi: 10.1007/s00784-012-0884-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Alkatheeri MS, Palasuk J, Eckert GJ, Platt JA, Bottino MC (2015) Halloysite nanotube incorporation into adhesive systems-effect on bond strength to human dentin. Clin Oral Investig 19:1905–1912. doi: 10.1007/s00784-015-1413-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Raquel Osorio
    • 1
    Email author
  • Inmaculada Cabello
    • 1
  • Antonio L. Medina-Castillo
    • 2
  • Estrella Osorio
    • 1
  • Manuel Toledano
    • 1
  1. 1.Dental School, Colegio MaximoUniversity of GranadaGranadaSpain
  2. 2.NanoMyP, Spin-Off EnterpriseUniversity of GranadaGranadaSpain

Personalised recommendations