Advertisement

Clinical Oral Investigations

, Volume 20, Issue 8, pp 2083–2095 | Cite as

Salivary function impairment in type 2 Diabetes patients associated with concentration and genetic polymorphisms of chromogranin A

  • Evelyn Mikaela KogawaEmail author
  • Daniela Corrêa Grisi
  • Denise Pinheiro Falcão
  • Ingrid Aquino Amorim
  • Taia Maria Berto Rezende
  • Izabel Cristina Rodrigues da Silva
  • Osmar Nascimento Silva
  • Octávio Luiz Franco
  • Rivadávio Fernandes Batista de Amorim
Original Article

Abstract

Objectives

The purpose of this study was to evaluate the effect of type 2 diabetes mellitus (T2DM) on salivary function impairments according to glycemic control status and subsequently compare the concentration of chromogranin A (CHGA) with its genetic profile.

Materials and methods

Thirty-six patients with controlled T2DM, 36 with poorly controlled T2DM, and 38 nondiabetic subjects underwent salivary flow rate measurements by means of unstimulated labial (ULS), unstimulated whole (UWS), and stimulated whole saliva (SWS) collections. CHGA concentrations were determined in saliva and plasma with ELISA, and two CHGA polymorphisms (T-415C and Glu264Asp) were analyzed by polymerase chain reaction-restriction fragment length polymorphism.

Results

T2DM patients presented significantly lower ULS and UWS flow rates regardless of glycemic control status compared to controls (P = 0.002 and P = 0.027, respectively). The SWS flow rate in the poorly controlled T2DM was the lowest among the groups (P = 0.026). Significantly higher plasma and salivary CHGA levels were found in T2DM groups (P = 0.019 and P < 0.001, respectively). CHGA gene variants (T-415C and Glu264Asp) revealed significant differences between diabetics and control subjects when associated with lower salivary flow and higher salivary CHGA production (P < 0.05).

Conclusions

T2DM causes abnormalities in the function of salivary glands. However, poorly controlled T2DM has the most influence on SWS flow rates. Our findings indicate an association between plasma and salivary CHGA levels and T2DM patients. Furthermore, the results suggest that CGHA polymorphisms might be associated with salivary gland hypofunction and higher salivary CHGA production in T2DM patients. Nevertheless, further epidemiological studies are required to elucidate this clinical implication.

Clinical relevance

Salivary impairments and high levels of CHGA are associated with T2DM patients. In addition, CGHA polymorphisms might be associated with salivary gland hypofunction and higher salivary CHGA production in T2DM patients. This could be a significant insight to establish a role for salivary CHGA as a potential clinical biomarker to T2DM.

Keywords

Type 2 diabetes Chromogranin A Saliva Polymorphism Genetic 

Notes

Acknowledgments

The present study would not have been possible without the participation of the patients and healthy volunteers. The authors would also like to thank Isabel Cristina Marques Fensterseifer, Larissa Bittencourt, Selma Soares Nascimento, Diego Batista da Silva, and Poliana Amanda Oliveira Silva for their excellent help with the experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Funding

This study was supported by grants from the Universidade de Brasília (DPP 10/2011) and Universidade Católica de Brasília (UCB).

References

  1. 1.
    Stridsberg M, Oberg K, Li Q, Engstrom U, Lundqvist G (1995) Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol 144(1):49–59PubMedCrossRefGoogle Scholar
  2. 2.
    Nobels FR, Kwekkeboom DJ, Bouillon R, Lamberts SW (1998) Chromogranin A: its clinical value as marker of neuroendocrine tumours. Eur J Clin Invest 28(6):431–440PubMedCrossRefGoogle Scholar
  3. 3.
    Soell M, Feki A, Hannig M, Sano H, Pinget M, Selimovic D (2010) Chromogranin A detection in saliva of type 2 diabetes patients. Bosn J Basic Medical Sci 10(1):2–8Google Scholar
  4. 4.
    Saruta J, Tsukinoki K, Sasaguri K, Ishii H, Yasuda M, Osamura YR, Watanabe Y, Sato S (2005) Expression and localization of chromogranin A gene and protein in human submandibular gland. Cells Tissues Organs 180(4):237–244. doi: 10.1159/000088939 PubMedCrossRefGoogle Scholar
  5. 5.
    O’Connor DT, Bernstein KN (1984) Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311(12):764–770. doi: 10.1056/NEJM198409203111204 PubMedCrossRefGoogle Scholar
  6. 6.
    Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324(6096):476–478. doi: 10.1038/324476a0 PubMedCrossRefGoogle Scholar
  7. 7.
    Gonzalez-Yanes C, Sanchez-Margalet V (2000) Pancreastatin modulates insulin signaling in rat adipocytes: mechanisms of cross-talk. Diabetes 49(8):1288–1294PubMedCrossRefGoogle Scholar
  8. 8.
    Tabish SA (2007) Is diabetes becoming the biggest epidemic of the twenty-first Century? Int J Health Sci 1(2):V–VIIIGoogle Scholar
  9. 9.
    Vesterinen M, Ruokonen H, Furuholm J, Honkanen E, Meurman JH (2011) Oral health in predialysis patients with emphasis on diabetic nephropathy. Clin Oral Invest 15(1):99–104CrossRefGoogle Scholar
  10. 10.
    Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321(7258):405–412PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Moore PA (2002) The diabetes-oral health connection. Compend Contin Educ Dent 23(12 Suppl):14–20PubMedGoogle Scholar
  12. 12.
    Mata AD, Marques D, Rocha S, Francisco H, Santos C, Mesquita MF, Singh J (2004) Effects of diabetes mellitus on salivary secretion and its composition in the human. Molecular Cell Biochem 261(1–2):137–142CrossRefGoogle Scholar
  13. 13.
    Khovidhunkit SO, Suwantuntula T, Thaweboon S, Mitrirattanakul S, Chomkhakhai U, Khovidhunkit W (2009) Xerostomia, hyposalivation, and oral microbiota in type 2 diabetic patients: a preliminary study. J Med Assoc Thai 92(9):1220–1228PubMedGoogle Scholar
  14. 14.
    Chavez EM, Taylor GW, Borrell LN, Ship JA (2000) Salivary function and glycemic control in older persons with diabetes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 89(3):305–311PubMedCrossRefGoogle Scholar
  15. 15.
    Bernardi MJ, Reis A, Loguercio AD, Kehrig R, Leite MF, Nicolau J (2007) Study of the buffering capacity, pH and salivary flow rate in type 2 well-controlled and poorly controlled diabetic patients. Oral health Prev Dent 5(1):73–78PubMedGoogle Scholar
  16. 16.
    Ben-Aryeh H, Cohen M, Kanter Y, Szargel R, Laufer D (1988) Salivary composition in diabetic patients. J Diabet Complications 2(2):96–99PubMedCrossRefGoogle Scholar
  17. 17.
    Vasconcelos AC, Soares MS, Almeida PC, Soares TC (2010) Comparative study of the concentration of salivary and blood glucose in type 2 diabetic patients. J Oral Sci 52(2):293–298PubMedCrossRefGoogle Scholar
  18. 18.
    Smidt D, Torpet LA, Nauntofte B, Heegaard KM, Pedersen AM (2010) Associations between labial and whole salivary flow rates, systemic diseases and medications in a sample of older people. Community Dent Oral Epidemiol 38(5):422–435. doi: 10.1111/j.1600-0528.2010.00554.x PubMedCrossRefGoogle Scholar
  19. 19.
    Meurman JH, Collin HL, Niskanen L, Toyry J, Alakuijala P, Keinanen S, Uusitupa M (1998) Saliva in non-insulin-dependent diabetic patients and control subjects: the role of the autonomic nervous system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 86(1):69–76PubMedCrossRefGoogle Scholar
  20. 20.
    Newrick PG, Bowman C, Green D, O’Brien IA, Porter SR, Scully C, Corrall RJ (1991) Parotid salivary secretion in diabetic autonomic neuropathy. J Diabet Complications 5(1):35–37PubMedCrossRefGoogle Scholar
  21. 21.
    Mouland AJ, Bevan S, White JH, Hendy GN (1994) Human chromogranin A gene. Molecular cloning, structural analysis, and neuroendocrine cell-specific expression. J Biol Chem 269(9):6918–6926PubMedGoogle Scholar
  22. 22.
    Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348(12):1134–1149. doi: 10.1056/NEJMra021405 PubMedCrossRefGoogle Scholar
  23. 23.
    American Diabetes A (2014) Standards of medical care in diabetes—2014. Diabetes Care 37(Suppl 1):S14–S80. doi: 10.2337/dc14-S014 CrossRefGoogle Scholar
  24. 24.
    Falcao DP, Leal SC, Vieira CN, Wolff A, Almeida TF, Nunes Fde P, de Amorim RF, Bezerra AC (2014) Sialometry of upper labial minor glands: a clinical approach by the use of weighing method Schirmer’s test strips paper. ScientificWorldJournal 2014:268634. doi: 10.1155/2014/268634 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ma Z, Tsuchiya N, Yuasa T, Huang M, Obara T, Narita S, Horikawa Y, Tsuruta H, Saito M, Satoh S, Ogawa O, Habuchi T (2010) Clinical significance of polymorphism and expression of chromogranin a and endothelin-1 in prostate cancer. J Urol 184(3):1182–1188. doi: 10.1016/j.juro.2010.04.063 PubMedCrossRefGoogle Scholar
  26. 26.
    Dodds MW, Yeh CK, Johnson DA (2000) Salivary alterations in type 2 (non-insulin-dependent) diabetes mellitus and hypertension. Community Dent Oral Epidemiol 28(5):373–381PubMedCrossRefGoogle Scholar
  27. 27.
    Streckfus CF, Marcus S, Welsh S, Brown RS, Cherry-Peppers G, Brown RH (1994) Parotid function and composition of parotid saliva among elderly edentulous African-American diabetics. J Oral Pathol Med 23(6):277–279PubMedCrossRefGoogle Scholar
  28. 28.
    Cristina de Lima D, Nakata GC, Balducci I, Almeida JD (2008) Oral manifestations of diabetes mellitus in complete denture wearers. J Prosthet Dent 99(1):60–65. doi: 10.1016/S0022-3913(08)60010-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Moritsuka M, Kitasako Y, Burrow MF, Ikeda M, Tagami J, Nomura S (2006) Quantitative assessment for stimulated saliva flow rate and buffering capacity in relation to different ages. J Dent 34(9):716–720. doi: 10.1016/j.jdent.2006.01.004 PubMedCrossRefGoogle Scholar
  30. 30.
    Sreebny LM, Yu A, Green A, Valdini A (1992) Xerostomia in diabetes mellitus. Diabetes Care 15(7):900–904PubMedCrossRefGoogle Scholar
  31. 31.
    Ben-Aryeh H, Serouya R, Kanter Y, Szargel R, Laufer D (1993) Oral health and salivary composition in diabetic patients. J Diabet Complications 7(1):57–62CrossRefGoogle Scholar
  32. 32.
    Beeley JA, Khoo KS, Lamey PJ (1991) Two-dimensional electrophoresis of human parotid salivary proteins from normal and connective tissue disorder subjects using immobilised pH gradients. Electrophoresis 12(7–8):493–499. doi: 10.1002/elps.1150120707 PubMedCrossRefGoogle Scholar
  33. 33.
    Shigeyama C, Ansai T, Awano S, Soh I, Yoshida A, Hamasaki T, Kakinoki Y, Tominaga K, Takahashi T, Takehara T (2008) Salivary levels of cortisol and chromogranin A in patients with dry mouth compared with age-matched controls. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(6):833–839. doi: 10.1016/j.tripleo.2008.07.005 PubMedCrossRefGoogle Scholar
  34. 34.
    Dodds MW, Johnson DA, Yeh CK (2005) Health benefits of saliva: a review. J Dent 33(3):223–233. doi: 10.1016/j.jdent.2004.10.009 PubMedCrossRefGoogle Scholar
  35. 35.
    Carda C, Carranza M, Arriaga A, Diaz A, Peydro A, Gomez de Ferraris ME (2005) Structural differences between alcoholic and diabetic parotid sialosis. Med Oral Patol Oral Cir Bucal 10(4):309–314PubMedGoogle Scholar
  36. 36.
    van Hooff M, van Baak MA, Schols M, Rahn KH (1984) Studies of salivary flow in borderline hypertension: effects of drugs acting on structures innervated by the autonomic nervous system. Clin Sci 66(5):599–604PubMedCrossRefGoogle Scholar
  37. 37.
    Persson RE, Izutsu KT, Treulove EL, Persson R (1991) Differences in salivary flow rates in elderly subjects using xerostomatic medications. Oral Surg Oral Med Oral Pathol 72(1):42–46PubMedCrossRefGoogle Scholar
  38. 38.
    Nederfors T, Dahlof C (1992) Effects of the beta-adrenoceptor antagonists atenolol and propranolol on human whole saliva flow rate and composition. Arch Oral Biol 37(7):579–584PubMedCrossRefGoogle Scholar
  39. 39.
    Dag E, Aydin S, Ozkan Y, Erman F, Dagli AF, Gurger M (2010) Alteration in chromogranin A, obestatin and total ghrelin levels of saliva and serum in epilepsy cases. Peptides 31(5):932–937. doi: 10.1016/j.peptides.2010.02.009 PubMedCrossRefGoogle Scholar
  40. 40.
    Den R, Toda M, Nagasawa S, Kitamura K, Morimoto K (2007) Circadian rhythm of human salivary chromogranin A. Biomed Res 28(1):57–60PubMedCrossRefGoogle Scholar
  41. 41.
    O’Connor DT, Cadman PE, Smiley C, Salem RM, Rao F, Smith J, Funk SD, Mahata SK, Mahata M, Wen G, Taupenot L, Gonzalez-Yanes C, Harper KL, Henry RR, Sanchez-Margalet V (2005) Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clinical Endocrinol Metab 90(9):5414–5425. doi: 10.1210/jc.2005-0408 CrossRefGoogle Scholar
  42. 42.
    Funakoshi A, Tateishi K, Shinozaki H, Matsumoto M, Wakasugi H (1990) Elevated plasma levels of pancreastatin (PST) in patients with non-insulin-dependent diabetes mellitus (NIDDM). Regul Pept 30(2):159–164PubMedCrossRefGoogle Scholar
  43. 43.
    Rao F, Wessel J, Wen G, Zhang L, Rana BK, Kennedy BP, Greenwood TA, Salem RM, Chen Y, Khandrika S, Hamilton BA, Smith DW, Holstein-Rathlou NH, Ziegler MG, Schork NJ, O’Connor DT (2007) Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertension 49(5):1015–1031. doi: 10.1161/HYPERTENSIONAHA.106.081679 PubMedCrossRefGoogle Scholar
  44. 44.
    Conner S, Iranpour B, Mills J (1970) Alteration in parotid salivary flow in diabetes mellitus. Oral Surg Oral Med Oral Pathol 30(1):55–59PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Evelyn Mikaela Kogawa
    • 1
    • 2
    • 9
    Email author
  • Daniela Corrêa Grisi
    • 2
  • Denise Pinheiro Falcão
    • 1
  • Ingrid Aquino Amorim
    • 3
    • 4
  • Taia Maria Berto Rezende
    • 2
    • 3
    • 4
  • Izabel Cristina Rodrigues da Silva
    • 5
  • Osmar Nascimento Silva
    • 4
    • 6
  • Octávio Luiz Franco
    • 4
    • 6
    • 7
    • 8
  • Rivadávio Fernandes Batista de Amorim
    • 1
  1. 1.Programa de Pós-graduação em Ciências MédicasUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Curso de OdontologiaUniversidade Católica de BrasíliaBrasíliaBrazil
  3. 3.Programa de Pós-Graduação em Ciências da SaúdeUniversidade de BrasíliaBrasíliaBrazil
  4. 4.Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e BiotecnologiaUniversidade Católica de BrasíliaBrasíliaBrazil
  5. 5.FCE, Universidade de BrasíliaBrasíliaBrazil
  6. 6.Pós-graduação em Ciências Biológicas (Biotecnologia e Genética), Departamento de Biologia, Instituto de Ciências BiológicasUniversidade de Juiz de ForaJuiz de ForaBrazil
  7. 7.Programa de Doutorado da Rede Centro-OesteBrasíliaBrazil
  8. 8.S-Inova, Pós-Graduação em BiotecnologiaUniversidade Católica Dom BoscoCampo GrandeBrazil
  9. 9.Universidade Católica de BrasíliaBrasíliaBrazil

Personalised recommendations