Clinical Oral Investigations

, Volume 20, Issue 8, pp 1921–1933 | Cite as

Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering

  • Eliseu A. Münchow
  • Divya Pankajakshan
  • Maria T. P. Albuquerque
  • Krzysztof Kamocki
  • Evandro Piva
  • Richard L. Gregory
  • Marco C. BottinoEmail author
Original Article



This study aims to synthesize and characterize biodegradable polymer-based matrices loaded with CaO nanoparticles for osteomyelitis treatment and bone tissue engineering.

Materials and methods

Poly(ε-caprolactone) (PCL) and PCL/gelatin (1:1, w/w) solutions containing CaO nanoparticles were electrospun into fibrous matrices. Scanning (SEM) and transmission (TEM) electron microscopy, Fourier transformed infrared (FTIR), energy dispersive X-ray spectroscopy (EDS), contact angle (CA), tensile testing, and antibacterial activity (agar diffusion assay) against Staphylococcus aureus were performed. Osteoprecursor cell (MC3T3-E1) response (i.e., viability and alkaline phosphatase expression/ALP) and infiltration into the matrices were evaluated.


CaO nanoparticles were successfully incorporated into the fibers, with the median fiber diameter decreasing after CaO incorporation. The CA decreased with the addition of CaO, and the presence of gelatin made the matrix very hydrophilic (CA = 0°). Increasing CaO concentrations progressively reduced the mechanical properties (p ≤ 0.030). CaO-loaded matrices did not display consistent antibacterial activity. MC3T3-E1 cell viability demonstrated the highest levels for CaO-loaded matrices containing gelatin after 7 days in culture. An increased ALP expression was consistently seen for PCL/CaO matrices when compared to PCL and gelatin-containing counterparts.


Despite inconsistent antibacterial activity, CaO nanoparticles can be effectively loaded into PCL or PCL/gelatin fibers without negatively affecting the overall performance of the matrices. More importantly, CaO incorporation enhanced cell viability as well as differentiation capacity, as demonstrated by an increased ALP expression.

Clinical significance

CaO-loaded electrospun matrices show potential for applications in bone tissue engineering.


CaO Nanofibers Osteomyelitis Electrospinning Bacteria MC3T3-E1 



We acknowledge the expert assistance of Dr. Maria Malgorzata Kamocka with the confocal/2-photon imaging at the Indiana Center for Biological Microscopy, Indianapolis, IN.

Compliance with ethical standards


This study was funded in part by an International Development Funds (IDF) Grant from Indiana University Purdue University (IUPUI/OVCR), by start-up funds from the IU School of Dentistry, and the NIH-NIDCR (Grant # DE023552) (all to M.C.B.). In addition, this project was supported by the Indiana Clinical and Translational Sciences Institute, funded in part by grant #UL1 TR001108 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Boskey AL (2013) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep 2:447. doi: 10.1038/bonekey.2013.181 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Patzakis MJ, Zalavras CG (2005) Chronic posttraumatic osteomyelitis and infected nonunion of the tibia: current management concepts. J Am Acad Orthop Surg 13:417–427CrossRefPubMedGoogle Scholar
  3. 3.
    Tamazawa G, Ito A, Miyai T, Matsuno T, Kitahara K, Sogo Y, Kimishima K, Satoh T (2011) Gatifloxacine-loaded PLGA and beta-tricalcium phosphate composite for treating osteomyelitis. Dent Mater J 30:264–273CrossRefPubMedGoogle Scholar
  4. 4.
    Romano CL, Logoluso N, Meani E, Romano D, De Vecchi E, Vassena C, Drago L (2014) A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study. Bone Joint J 96-B:845–850. doi: 10.1302/0301-620X.96B6.33014 CrossRefPubMedGoogle Scholar
  5. 5.
    Patwardhan S, Shyam AK, Mody RA, Sancheti PK, Mehta R, Agrawat H (2013) Reconstruction of bone defects after osteomyelitis with nonvascularized fibular graft: a retrospective study in twenty-six children. J Bone Joint Surg Am 95:e561–e566. doi: 10.2106/JBJS.K.01338 CrossRefGoogle Scholar
  6. 6.
    Liu RW, Abaza H, Mehta P, Bauer J, Cooperman DR, Gilmore A (2013) Intravenous versus oral outpatient antibiotic therapy for pediatric acute osteomyelitis. Iowa Orthop J 33:208–212PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kurikchy MQ, Al-Rawi NH, Ayoub RS, Mohammed SS (2013) Histological evaluation of bone healing using organic bovine bone in combination with platelet-rich plasma (an experimental study on rabbits). Clin Oral Investig 17:897–904. doi: 10.1007/s00784-012-0751-z CrossRefPubMedGoogle Scholar
  8. 8.
    Miron RJ, Wei L, Bosshardt DD, Buser D, Sculean A, Zhang Y (2014) Effects of enamel matrix proteins in combination with a bovine-derived natural bone mineral for the repair of bone defects. Clin Oral Investig 18:471–478. doi: 10.1007/s00784-013-0992-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Mutlu I, Aydintug YS, Kaya A, Bayar GR, Suer BT, Gulses A (2012) The evaluation of the effects of hyperbaric oxygen therapy on new bone formation obtained by distraction osteogenesis in terms of consolidation periods. Clin Oral Investig 16:1363–1370. doi: 10.1007/s00784-011-0644-6 CrossRefPubMedGoogle Scholar
  10. 10.
    Nguyen LT, Min YK, Lee BT (2015) Nanoparticle biphasic calcium phosphate loading on gelatin-pectin scaffold for improved bone regeneration. Tissue Eng Part A. doi: 10.1089/ten.TEA.2014.0313 Google Scholar
  11. 11.
    Mohammadi R, Amini K (2015) Guided bone regeneration of mandibles using chitosan scaffold seeded with characterized uncultured omental adipose-derived stromal vascular fraction: an animal study. Int J Oral Maxillofac Implants 30:216–222. doi: 10.11607/jomi.3542 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Y, Miron RJ, Li S, Shi B, Sculean A, Cheng X (2015) Novel mesoporous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. J Clin Periodontol. doi: 10.1111/jcpe.12364 Google Scholar
  13. 13.
    Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM (2012) Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater 28:703–721. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  14. 14.
    Lin L, Gao H, Dong Y (2015) Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on beta-TCP/PLGA. J Mater Sci Mater Med 26:5327. doi: 10.1007/s10856-014-5327-9 PubMedGoogle Scholar
  15. 15.
    Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21Google Scholar
  16. 16.
    Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, Spolnik KJ, Gregory RL (2013) Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 92:963–969. doi: 10.1177/0022034513505770 CrossRefPubMedGoogle Scholar
  17. 17.
    Bottino MC, Thomas V, Janowski GM (2011) A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater 7:216–224. doi: 10.1016/j.actbio.2010.08.019 CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng CF, Wu KM, Chen YT, Hung SL (2013) Bacterial adhesion to antibiotic-loaded guided tissue regeneration membranes—a scanning electron microscopy study. J Formos Med Assoc 114:35–45. doi: 10.1016/j.jfma.2013.07.010 CrossRefPubMedGoogle Scholar
  19. 19.
    Palasuk J, Kamocki K, Hippenmeyer L, Platt JA, Spolnik KJ, Gregory RL, Bottino MC (2014) Bimix antimicrobial scaffolds for regenerative endodontics. J Endod 40:1879–1884. doi: 10.1016/j.joen.2014.07.017 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Waeiss RA, Negrini TC, Arthur RA, Bottino MC (2014) Antimicrobial effects of drug-containing electrospun matrices on osteomyelitis-associated pathogens. J Oral Maxillofac Surg 72:1310–1319. doi: 10.1016/j.joms.2014.01.007 CrossRefPubMedGoogle Scholar
  21. 21.
    Chuensombat S, Khemaleelakul S, Chattipakorn S, Srisuwan T (2013) Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combination: an in vitro study. J Endod 39:813–819. doi: 10.1016/j.joen.2012.11.041 CrossRefPubMedGoogle Scholar
  22. 22.
    Ferreira MB, Myiagi S, Nogales CG, Campos MS, Lage-Marques JL (2010) Time- and concentration-dependent cytotoxicity of antibiotics used in endodontic therapy. J Appl Oral Sci 18:259–263CrossRefPubMedGoogle Scholar
  23. 23.
    Bottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL (2014) Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig 18:2151–2158. doi: 10.1007/s00784-014-1201-x CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Roy A, Gauri SS, Bhattacharya M, Bhattacharya J (2013) Antimicrobial activity of CaO nanoparticles. J Biomed Nanotechnol 9:1570–1578CrossRefPubMedGoogle Scholar
  25. 25.
    Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809CrossRefPubMedGoogle Scholar
  26. 26.
    Shi S, Zhou J, Han S, Ye J (2010) Luminescence and energy transfer of organic chromophores bound to inorganic nano-lamellar frameworks. J Nanosci Nanotechnol 10:1834–1838CrossRefPubMedGoogle Scholar
  27. 27.
    Nandakumar A, Yang L, Habibovic P, van Blitterswijk C (2010) Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26:7380–7387. doi: 10.1021/la904406b CrossRefPubMedGoogle Scholar
  28. 28.
    Seol YJ, Kim KH, Kang YM, Kim IA, Rhee SH (2009) Bioactivity, pre-osteoblastic cell responses, and osteoconductivity evaluations of the electrospun non-woven SiO2-CaO gel fabrics. J Biomed Mater Res B Appl Biomater 90:679–687. doi: 10.1002/jbm.b.31334 CrossRefPubMedGoogle Scholar
  29. 29.
    Seol YJ, Kim KH, Kim IA, Rhee SH (2010) Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric. J Biomed Mater Res A 94:649–659. doi: 10.1002/jbm.a.32738 PubMedGoogle Scholar
  30. 30.
    Münchow EA, Albuquerque MT, Zero B, Kamocki K, Piva E, Gregory RL, Bottino MC (2015) Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent Mater 31:1038–1051. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ilharreborde B (2014) Sequelae of pediatric osteoarticular infection. Orthop Traumatol Surg Res 101:S129–S137. doi: 10.1016/j.otsr.2014.07.029 CrossRefPubMedGoogle Scholar
  32. 32.
    Prasad SC, Prasad KC, Kumar A, Thada ND, Rao P, Chalasani S (2014) Osteomyelitis of the temporal bone: terminology, diagnosis, and management. J Neurol Surg B Skull Base 75:324–331. doi: 10.1055/s-0034-1372468 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    K-hasuwan PR, Pavasant P, Supaphol P (2011) Effect of the surface topography of electrospun poly(epsilon-caprolactone)/poly(3-hydroxybuterate-co-3-hydroxyvalerate) fibrous substrates on cultured bone cell behavior. Langmuir 27:10938–10946. doi: 10.1021/la202255w CrossRefPubMedGoogle Scholar
  34. 34.
    Dargaville BL, Vaquette C, Rasoul F, Cooper-White JJ, Campbell JH, Whittaker AK (2013) Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering. Acta Biomater 9:6885–6897. doi: 10.1016/j.actbio.2013.02.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y, Weiss AS (2011) Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32:6729–6736. doi: 10.1016/j.biomaterials.2011.05.065 CrossRefPubMedGoogle Scholar
  36. 36.
    Busscher HJ, Stokroos I, Golverdingen JG, Schakenraad JM (1991) Adhesion and spreading of human fibroblasts on superhydrophobic Fep-teflon. Cell Mater 1:243–249Google Scholar
  37. 37.
    Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH (2008) The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 29:1872–1879. doi: 10.1016/j.biomaterials.2007.12.029 CrossRefPubMedGoogle Scholar
  38. 38.
    Phipps MC, Clem WC, Catledge SA, Xu Y, Hennessy KM, Thomas V, Jablonsky MJ, Chowdhury S, Stanishevsky AV, Vohra YK, Bellis SL (2011) Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS One 6:e16813. doi: 10.1371/journal.pone.0016813 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72:156–165. doi: 10.1002/jbm.b.30128 CrossRefPubMedGoogle Scholar
  40. 40.
    Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He A, Zhang W, Liu W, Cao Y, Zhou G (2014) The influence of gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 35:152–164. doi: 10.1016/j.biomaterials.2013.09.082 CrossRefPubMedGoogle Scholar
  41. 41.
    Rajzer I, Menaszek E, Kwiatkowski R, Planell JA, Castano O (2014) Electrospun gelatin/poly(epsilon-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 44:183–190. doi: 10.1016/j.msec.2014.08.017 CrossRefPubMedGoogle Scholar
  42. 42.
    Li X, Xie J, Yuan X, Xia Y (2008) Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24:14145–14150. doi: 10.1021/la802984a CrossRefPubMedGoogle Scholar
  43. 43.
    Nelson MT, Johnson J, Lannutti J (2014) Media-based effects on the hydrolytic degradation and crystallization of electrospun synthetic-biologic blends. J Mater Sci Mater Med 25:297–309. doi: 10.1007/s10856-013-5077-0 CrossRefPubMedGoogle Scholar
  44. 44.
    Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP (2012) Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents 40:135–139. doi: 10.1016/j.ijantimicag.2012.04.012 CrossRefPubMedGoogle Scholar
  45. 45.
    Tang ZX, Yu Z, Zhang ZL, Zhang XY, Pan QQ, Shi LE (2013) Sonication-assisted preparation of CaO nanoparticles for antibacterial agents. Química Nov. 36:933–936Google Scholar
  46. 46.
    Jeong SI, Lee AY, Lee YM, Shin H (2008) Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. J Biomater Sci Polym Ed 19:339–357. doi: 10.1163/156856208783721029 CrossRefPubMedGoogle Scholar
  47. 47.
    Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S (2012) Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23:095705. doi: 10.1088/0957-4484/23/9/095705 CrossRefPubMedGoogle Scholar
  48. 48.
    Xue J, Feng B, Zheng R, Lu Y, Zhou G, Liu W, Cao Y, Zhang Y, Zhang WJ (2013) Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials 34:2624–2631. doi: 10.1016/j.biomaterials.2012.12.011 CrossRefPubMedGoogle Scholar
  49. 49.
    Lao L, Wang Y, Zhu Y, Zhang Y, Gao C (2011) Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med 22:1873–1884. doi: 10.1007/s10856-011-4374-8 CrossRefPubMedGoogle Scholar
  50. 50.
    Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A (2011) Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J Biomed Mater Res A 96:566–574. doi: 10.1002/jbm.a.33010 CrossRefPubMedGoogle Scholar
  51. 51.
    Ni P, Fu S, Fan M, Guo G, Shi S, Peng J, Luo F, Qian Z (2011) Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Int J Nanomedicine 6:3065–3075. doi: 10.2147/IJN.S25297 PubMedPubMedCentralGoogle Scholar
  52. 52.
    An S, Gao Y, Ling J, Wei X, Xiao Y (2012) Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. J Mater Sci Mater Med 23:789–795. doi: 10.1007/s10856-011-4531-0 CrossRefPubMedGoogle Scholar
  53. 53.
    Nakamura S, Matsumoto T, Sasaki J, Egusa H, Lee KY, Nakano T, Sohmura T, Nakahira A (2010) Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A 16:2467–2473. doi: 10.1089/ten.TEA.2009.0337 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Eliseu A. Münchow
    • 1
    • 2
  • Divya Pankajakshan
    • 1
  • Maria T. P. Albuquerque
    • 1
    • 3
  • Krzysztof Kamocki
    • 1
  • Evandro Piva
    • 2
  • Richard L. Gregory
    • 1
  • Marco C. Bottino
    • 1
    Email author
  1. 1.Division of Dental Biomaterials, Department of Biomedical and Applied SciencesIndiana University School of Dentistry IndianapolisUSA
  2. 2.School of DentistryFederal University of Pelotas – UFPelPelotasBrazil
  3. 3.Graduate Program in DentistryUniversidade Estadual Paulista, São José dos Campos Dental SchoolSão José dos CamposBrazil

Personalised recommendations