Advertisement

Clinical Oral Investigations

, Volume 20, Issue 3, pp 589–595 | Cite as

Bone grafting material in combination with Osteogain for bone repair: a rat histomorphometric study

  • Yufeng ZhangEmail author
  • Dai Jing
  • Daniel Buser
  • Anton Sculean
  • Fatiha Chandad
  • Richard J. MironEmail author
Original Article

Abstract

Objectives

Enamel matrix derivative (EMD) has been successfully used for the regeneration of periodontal tissues including new cementum, periodontal ligament, and alveolar bone. Combination of EMD with bone grafting materials has however generated variable clinical results. Recently, we have demonstrated that a new formulation of EMD in a liquid carrier system (Osteogain®) has improved physicochemical properties for the adsorption of EMD to a bone grafting material. The aim of the present study was to investigate the regenerative potential of Osteogain®, in combination with a bone graft, on new bone formation in a rat femur defect model.

Materials and methods

Fifty-four critically sized femur defects (3 mm in diameter) were created bilaterally in 27 rats and treated following the group allocation: (1) drilled unfilled control, (2) a natural bone mineral (NBM), and (3) NBM + Osteogain®. All defects were histologically analyzed at 2, 4, and 8 weeks after surgical intervention. Micro-CT analysis, hematoxylin and eosin (H&E) staining, and Safranin O staining were performed to quantify new bone formation.

Results

Significantly more new bone formation was observed in defects treated with NBM + Osteogain® at both 4 and 8 weeks when compared to NBM alone and the control unfilled defects (P < 0.05). Histologically, the formation of more mature mineralized bone with the presence of osteocytes were found more commonly in defects treated with Osteogain® + NBM at 8 weeks post-healing when compared to NBM alone.

Conclusions

The present study demonstrate that Osteogain® in combination with a bone grafting material improves the speed and quality of new bone formation in rat osseous defects.

Clinical relevance

Future clinical research are now warranted to fully characterize the benefits of Osteogain®, a new formulation of enamel matrix proteins delivered in liquid formation when used in combination with a bone grafting material.

Keywords

Enamel matrix derivative (EMD) Emdogain Natural bone mineral BioOss Bone grafting materials 

Notes

Conflict of interest

The study was funded by Straumann AG, Basel, Switzerland. The NBM bone graft was provided by Geistlich Pharma AG, Switzerland, and Osteogain® was provided by Straumann AG, Switzerland. No further conflict of interest exists.

References

  1. 1.
    Sculean A, Alessandri R, Miron R, Salvi G, Bosshard DD (2011) Enamel matrix proteins and periodontal wound healing and regeneration. Clin Adv Periodontics 1:101–117CrossRefGoogle Scholar
  2. 2.
    Aspriello SD, Ferrante L, Rubini C, Piemontese M (2011) Comparative study of DFDBA in combination with enamel matrix derivative versus DFDBA alone for treatment of periodontal intrabony defects at 12 months post-surgery. Clinical oral investigations 15:225–232CrossRefPubMedGoogle Scholar
  3. 3.
    Pietruska M, Pietruski J, Nagy K, Brecx M, Arweiler NB, Sculean A (2012) Four-year results following treatment of intrabony periodontal defects with an enamel matrix derivative alone or combined with a biphasic calcium phosphate. Clinical oral investigations 16:1191–1197. doi: 10.1007/s00784-011-0611-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Oortgiesen DA, Meijer GJ, Bronckers AL, Walboomers XF, Jansen JA (2013) Regeneration of the periodontium using enamel matrix derivative in combination with an injectable bone cement. Clin Oral Investig 17:411–421. doi: 10.1007/s00784-012-0743-z CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bosshardt DD (2008) Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 35:87–105. doi: 10.1111/j.1600-051X.2008.01264.x CrossRefPubMedGoogle Scholar
  6. 6.
    Lyngstadaas SP, Wohlfahrt JC, Brookes SJ, Paine ML, Snead ML, Reseland JE (2009) Enamel matrix proteins; old molecules for new applications. Orthodontics & Craniofac Res 12:243–253. doi: 10.1111/j.1601-6343.2009.01459.x CrossRefGoogle Scholar
  7. 7.
    Margolis HC, Beniash E, Fowler CE (2006) Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 85:775–793CrossRefPubMedGoogle Scholar
  8. 8.
    Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL (2006) 3. Protein-protein interactions of the developing enamel matrix. Curr Top Dev Biol 74:57–115. doi: 10.1016/s0070-2153(06)74003-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Miron RJ, Guillemette V, Zhang Y, Chandad F, Sculean A (2014) Enamel matrix derivative in combination with bone grafts: a review of the literature. Quintessence Int 45:475–487. doi: 10.3290/j.qi.a31541 PubMedGoogle Scholar
  10. 10.
    Guida L, Annunziata M, Belardo S, Farina R, Scabbia A, Trombelli L (2007) Effect of autogenous cortical bone particulate in conjunction with enamel matrix derivative in the treatment of periodontal intraosseous defects. J Periodontol 78:231–238. doi: 10.1902/jop.2007.060142 CrossRefPubMedGoogle Scholar
  11. 11.
    Kuru B, Yilmaz S, Argin K, Noyan U (2006) Enamel matrix derivative alone or in combination with a bioactive glass in wide intrabony defects. Clin Oral Investig 10:227–234. doi: 10.1007/s00784-006-0052-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Velasquez-Plata D, Scheyer ET, Mellonig JT (2002) Clinical comparison of an enamel matrix derivative used alone or in combination with a bovine-derived xenograft for the treatment of periodontal osseous defects in humans. J Periodontol 73:433–440. doi: 10.1902/jop.2002.73.4.433 CrossRefPubMedGoogle Scholar
  13. 13.
    Lekovic V, Camargo PM, Weinlaender M, Nedic M, Aleksic Z, Kenney EB (2000) A comparison between enamel matrix proteins used alone or in combination with bovine porous bone mineral in the treatment of intrabony periodontal defects in humans. J Periodontol 71:1110–1116. doi: 10.1902/jop.2000.71.7.1110 CrossRefPubMedGoogle Scholar
  14. 14.
    Zucchelli G, Amore C, Montebugnoli L, De Sanctis M (2003) Enamel matrix proteins and bovine porous bone mineral in the treatment of intrabony defects: a comparative controlled clinical trial. J Periodontol 74:1725–1735. doi: 10.1902/jop.2003.74.12.1725 CrossRefPubMedGoogle Scholar
  15. 15.
    Gurinsky BS, Mills MP, Mellonig JT (2004) Clinical evaluation of demineralized freeze-dried bone allograft and enamel matrix derivative versus enamel matrix derivative alone for the treatment of periodontal osseous defects in humans. J Periodontol 75:1309–1318. doi: 10.1902/jop.2004.75.10.1309 CrossRefPubMedGoogle Scholar
  16. 16.
    Trombelli L, Farina R (2008) Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J Clin Periodontol 35:117–135. doi: 10.1111/j.1600-051X.2008.01265.x CrossRefPubMedGoogle Scholar
  17. 17.
    Miron RJ, Bosshardt DD, Buser D, Zhang Y, Tugulu S, Gemperli A, Dard M, Caluseru OM, Chandad F and Sculean A (2015) Comparison of the capacity of enamel matrix derivative-gel and enamel matrix derivative in liquid formulation to adsorb to bone grafting materials. J Periodontol:1–18. doi:  10.1902/jop.2015.140538
  18. 18.
    Cheng N, Dai J, Cheng X, Li S, Miron RJ, Wu T, Chen W, Zhang Y, Shi B (2013) Porous CaP/silk composite scaffolds to repair femur defects in an osteoporotic model. J Mater Sci Mater Med 24:1963–1975. doi: 10.1007/s10856-013-4945-y CrossRefPubMedGoogle Scholar
  19. 19.
    Wei L, Miron RJ, Shi B, Zhang Y (2013) Osteoinductive and osteopromotive variability among different demineralized bone allografts. Clin Implant Dent Relat Res. doi: 10.1111/cid.12118 Google Scholar
  20. 20.
    Miron RJ, Wei L, Bosshardt DD, Buser D, Sculean A, Zhang Y (2014) Effects of enamel matrix proteins in combination with a bovine-derived natural bone mineral for the repair of bone defects. Clinical oral investigations 18:471–478. doi: 10.1007/s00784-013-0992-5 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang Y, Cheng N, Miron R, Shi B, Cheng X (2012) Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 33:6698–6708. doi: 10.1016/j.biomaterials.2012.06.021 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang Y, Wu C, Luo T, Li S, Cheng X, Miron RJ (2012) Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration. Bone 51:704–713. doi: 10.1016/j.bone.2012.06.029 CrossRefPubMedGoogle Scholar
  23. 23.
    Liao L, Yang S, Miron RJ, Wei J, Zhang Y, Zhang M (2014) Osteogenic properties of PBLG-g-HA/PLLA nanocomposites. PLoS One 9, e105876. doi: 10.1371/journal.pone.0105876 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wei L, Ke J, Prasadam I, Miron RJ, Lin S, Xiao Y, Chang J, Wu C and Zhang Y (2014) A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 25:2089–2096. doi:  10.1007/s00198-014-2735-0
  25. 25.
    Zhang Y, Wei L, Miron RJ, Shi B, Bian Z (2014) Anabolic bone formation via a site specific bone targeting delivery system by interfering with semaphorin 4D expression. J Bone Miner Res: Off J Am Soc Bone Min Res. doi: 10.1002/jbmr.2322 Google Scholar
  26. 26.
    Miron RJ, Bosshardt DD, Hedbom E, Zhang Y, Haenni B, Buser D, Sculean A (2012) Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation. J Periodontol 83:936–947. doi: 10.1902/jop.2011.110480 CrossRefPubMedGoogle Scholar
  27. 27.
    Miron RJ, Bosshardt DD, Zhang Y, Buser D, Sculean A (2013) Gene array of primary human osteoblasts exposed to enamel matrix derivative in combination with a natural bone mineral. Clin Oral Investig 17:405–410. doi: 10.1007/s00784-012-0742-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Scheyer ET, Velasquez-Plata D, Brunsvold MA, Lasho DJ, Mellonig JT (2002) A clinical comparison of a bovine-derived xenograft used alone and in combination with enamel matrix derivative for the treatment of periodontal osseous defects in humans. J Periodontol 73:423–432. doi: 10.1902/jop.2002.73.4.423 CrossRefPubMedGoogle Scholar
  29. 29.
    Sculean A, Chiantella GC, Windisch P, Gera I, Reich E (2002) Clinical evaluation of an enamel matrix protein derivative (Emdogain) combined with a bovine-derived xenograft (Bio-Oss) for the treatment of intrabony periodontal defects in humans. Int J Periodontics Restorative Dent 22:259–267PubMedGoogle Scholar
  30. 30.
    Miron RJ, Caluseru OM, Guillemette V, Zhang Y, Gemperli AC, Chandad F, Sculean A (2013) Influence of enamel matrix derivative on cells at different maturation stages of differentiation. PLoS One 8, e71008. doi: 10.1371/journal.pone.0071008 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Boyan BD, Weesner TC, Lohmann CH, Andreacchio D, Carnes DL, Dean DD, Cochran DL, Schwartz Z (2000) Porcine fetal enamel matrix derivative enhances bone formation induced by demineralized freeze dried bone allograft in vivo. J Periodontol 71:1278–1286. doi: 10.1902/jop.2000.71.8.1278 CrossRefPubMedGoogle Scholar
  32. 32.
    Sakallioglu U, Acikgoz G, Ayas B, Kirtiloglu T, Sakallioglu E (2004) Healing of periodontal defects treated with enamel matrix proteins and root surface conditioning--an experimental study in dogs. Biomaterials 25:1831–1840CrossRefPubMedGoogle Scholar
  33. 33.
    Stout BM, Alent BJ, Pedalino P, Holbrook R, Gluhak-Heinrich J, Cui Y, Harris MA, Gemperli AC, Cochran DL, Deas DE, Harris SE (2014) Enamel matrix derivative: protein components and osteoinductive properties. J Periodontol 85:e9–e17. doi: 10.1902/jop.2013.130264 CrossRefPubMedGoogle Scholar
  34. 34.
    Kawana F, Sawae Y, Sahara T, Tanaka S, Debari K, Shimizu M, Sasaki T (2001) Porcine enamel matrix derivative enhances trabecular bone regeneration during wound healing of injured rat femur. Anat Rec 264:438–446CrossRefPubMedGoogle Scholar
  35. 35.
    Sawae Y, Sahara T, Kawana F, Sasaki T (2002) Effects of enamel matrix derivative on mineralized tissue formation during bone wound healing in rat parietal bone defects. J Electron Microsc 51:413–423CrossRefGoogle Scholar
  36. 36.
    Kauvar AS, Thoma DS, Carnes DL, Cochran DL (2010) In vivo angiogenic activity of enamel matrix derivative. J Periodontol 81:1196–1201. doi: 10.1902/jop.2010.090441 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of StomatologyWuhan UniversityWuhanChina
  2. 2.Department of Oral Surgery and Stomatology, School of Dental MedicineUniversity of BernBernSwitzerland
  3. 3.Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
  4. 4.University of Laval, Dental SchoolQuebec CityCanada

Personalised recommendations