Clinical Oral Investigations

, Volume 20, Issue 1, pp 109–116

Expression patterns of immune genes in long-term cultured dental stem cells

  • Pukana Jayaraman
  • Vijayendran Govindasamy
  • Nareshwaran Gnanasegaran
  • Wijenthiran Kunasekaran
  • Punitha Vasanthan
  • Sabri Musa
  • Noor Hayaty Abu Kasim
Original Article


Background and objectives

Long-term culture system is used to prevent the impediment of insufficient cells and is good for low starting materials such as dental pulp or periodontal ligament. In general, although cell viability and functionality are the most common aspects taken into consideration in culturing cells for a long term, they may not truly represent the biological state of the cells. Hence, we explored the behaviour of another important aspect which is the immune properties in long-term cultured cells.


Dental pulp stem cells from deciduous (SHED; n = 3) and permanent (DPSCs; n = 3) teeth as well as periodontal ligament stem cells (PDLSCs; n = 3) were cultured under identical culture condition. The immune properties of each cell lines were profiled at passage 2 [P2] and passage 9 [P9] as early and late passages, respectively. This was further validated at the protein level using the Luminex platform.


A major shift of genes was noticed at P9 with SHED being the highest. SHED cultured at P9 displayed many genes representing pathogen recognition (P < 0.001), immune signalling (P < 0.001, pro-inflammatory (P < 0.001), anti-inflammatory (P < 0.001) and immune-related growth and stimulation factor (P < 0.001) as compared to DPSCs and PDLSCs. Surprisingly, SHED also expressed many cytotoxicity genes (P < 0.001).


Communally, instabilities of immune genes from our findings suggest that long-term cultured cells may not be feasible for transplantation purposes.

Clinical relevance

A complete biological characterization covering all major aspects including immune properties should be made as prerequisite criteria prior to the use of long-term cultured stem cells in clinical settings.


Immune properties Gene expression profile Regenerative medicine Growth factors Cytokines Chemokine 


  1. 1.
    Ponnaiyan D (2014) Do dental stem cells depict distinct characteristics?—Establishing their “phenotypic fingerprint”. Dent Res J (Isfahan) 11:163–172Google Scholar
  2. 2.
    Rodriguez-Lozano FJ, Insausti CL, Iniesta F, Blanquer M, Ramírez MC, Meseguer L, Meseguer-Henarejos AB, Marín N, Martínez S, Moraleda JM (2012) Mesenchymal dental stem cells in regenerative dentistry. Med Oral Patol Oral Cir Bucal 17:e1062–e1067PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sedgley CM, Botero TM (2012) Dental stem cells and their sources. Dent Clin N Am 56:549–561PubMedCrossRefGoogle Scholar
  4. 4.
    Tan J, Xu X, Lin J, Fan L, Zheng Y, Kuang W (2014). Dental stem cell in tooth development and advances of adult dental stem cell in regenerative therapies. Curr Stem Cell Res Ther 9:1-9Google Scholar
  5. 5.
    Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M (2010) Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells. Stem Cells Dev 19:117–130PubMedCrossRefGoogle Scholar
  6. 6.
    Govindasamy V, Ronald VS, Abdullah AN, Nathan KRG, Aziz ZACA, Abdullah M, Zain RB, Kasim NHA, Musa S, Bhonde RR (2011) Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications. Cytotherapy 13:1221–1233PubMedCrossRefGoogle Scholar
  7. 7.
    Huang J, Sha H, Wang G, Bao G, Lu S, Luo Q, Tan Q (2015) Isolation and characterization of ex vivo expanded mesenchymal stem cells obtained from a surgical patient. Mol Med Rep 11:1777–1783PubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhuang Y, Li D, Fu J, Shi Q, Lu Y, Ju X (2015) Comparison of biological properties of umbilical cord-derived mesenchymal stem cells from early and late passages: immunomodulatory ability is enhanced in aged cells. Mol Med Rep 11:166–174PubMedPubMedCentralGoogle Scholar
  9. 9.
    Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Carriel V, Scionti G, Alaminos M (2014) Cell viability and proliferation capability of long-term human dental pulp stem cell cultures. Cytotherapy 16:266–277PubMedCrossRefGoogle Scholar
  10. 10.
    Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621PubMedCrossRefGoogle Scholar
  11. 11.
    Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219:667–676PubMedCrossRefGoogle Scholar
  12. 12.
    Machado Cde V, Telles PD, Nascimento IL (2013) Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter 35:62–67PubMedCrossRefGoogle Scholar
  13. 13.
    De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12:574–591PubMedCrossRefGoogle Scholar
  14. 14.
    Vasandan AB, Shankar SR, Prasad P, Jahnavi VS, Bhonde RR, Prasanna SJ (2014) Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. J Cell Mol Med 18:344–354PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Winkler B, Taschik J, Haubitz I, Eyrich M, Schlegel PG, Wiegering V (2015) TGFbeta and IL10 have an impact on risk group and prognosis in childhood ALL. Pediatr Blood Cancer 62:72–79PubMedCrossRefGoogle Scholar
  16. 16.
    Karaoz E, Dogan BN, Aksoy A, Gacar G, Akyüz S, Ayhan S, Genç ZS (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95–112PubMedCrossRefGoogle Scholar
  17. 17.
    Jung IH, Kwon BS, Kim SH, Shim HE, Jun CM, Yun JH (2013) Optimal medium formulation for the long-term expansion and maintenance of human periodontal ligament stem cells. J Periodontol 84:1434–1444PubMedCrossRefGoogle Scholar
  18. 18.
    Bogdanova A, Berzins U, Nikulshin S, Skrastina D, Ezerta A, Legzdina D, Kozlovska T (2014) Characterization of human adipose-derived stem cells cultured in autologous serum after subsequent passaging and long term cryopreservation. J Stem Cells 9:135–148PubMedGoogle Scholar
  19. 19.
    Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, Meng L (2013). Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 4:e950Google Scholar
  20. 20.
    Roselli EA, Lazzati S, Iseppon F, Manganini M, Marcato L, Gariboldi MB, Maggi F, Grati FR, Simoni G (2013) Fetal mesenchymal stromal cells from cryopreserved human chorionic villi: cytogenetic and molecular analysis of genome stability in long-term cultures. Cytotherapy 15:1340–1351PubMedCrossRefGoogle Scholar
  21. 21.
    Scheers I, Lombard C, Paganelli M, Campard D, Najimi M, Gala JL, Decottignies A, Sokal E (2013). Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture. PLoS One 8:e71374Google Scholar
  22. 22.
    Frazier TP, Gimble JM, Devay JW, Tucker HA, Chiu ES, Rowan BG (2013) Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol 14:1–12CrossRefGoogle Scholar
  23. 23.
    Laurin D, Kanitakis J, Bienvenu J, Bardin C, Bernaud J, Lebecque S, Gebuhrer L, Rigal D, Eljaafari A (2004) Allogeneic reaction induces dendritic cell maturation through proinflammatory cytokine secretion. Transplantation 77:267–275PubMedCrossRefGoogle Scholar
  24. 24.
    Xu G, Liu G, Xiong S, Liu H, Chen X, Zheng X (2015) Histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing IL-6 and TNF-alpha production. J Biol Chem. doi:10.1074/jbc.M114.610345 Google Scholar
  25. 25.
    Katz LH, Kopylov U, Fudim E, Yavzori M, Picard O, Ungar B, Eliakim R, Ben-Horin S, Chowers Y (2014) Expression of IL-2, IL-17 and TNF-alpha in patients with Crohn's disease treated with anti-TNF antibodies. Clin Res Hepatol Gastroenterol 38:491–498PubMedCrossRefGoogle Scholar
  26. 26.
    Morales-Garcia G, Falfan-Valencia R, Garcia-Ramirez RA, Camarena A, Ramirez-Venegas A, Castillejos-López M, Pérez-Rodríguez M (2012) Pandemic influenza A/H1N1 virus infection and TNF, LTA, IL1B, IL6, IL8, and CCL polymorphisms in Mexican population: a case-control study. BMC Infect Dis 12:299PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Strassmann G, Patil-Koota V, Finkelman F, Fong M, Kambayashi T (1994) Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J Exp Med 180:2365–2370PubMedCrossRefGoogle Scholar
  28. 28.
    Yoshimura A, Muto G (2011) TGF-beta function in immune suppression. Curr Top Microbiol Immunol 350:127–147PubMedGoogle Scholar
  29. 29.
    Balasubramanian S, Venugopal P, Sundarraj S, Zakaria Z, Majumdar AS, Ta M (2012) Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy 14:26–33PubMedCrossRefGoogle Scholar
  30. 30.
    Cullen SP, Brunet M, Martin SJ (2010) Granzymes in cancer and immunity. Cell Death Differ 17:616–623PubMedCrossRefGoogle Scholar
  31. 31.
    Vecchiatini R, Penolazzi L, Lambertini E, Angelozzi M, Morganti C, Mazzitelli S, Trombelli L, Nastruzzi C, Piva R (2014) Effect of dynamic three-dimensional culture on osteogenic potential of human periodontal ligament-derived mesenchymal stem cells entrapped in alginate microbeads. J Periodontal Res. doi:10.1111/jre.12225 PubMedGoogle Scholar
  32. 32.
    Elseberg CL, Salzig D, Czermak P (2014) Bioreactor expansion of human mesenchymal stem cells according to GMP requirements. Methods Mol Biol. doi:10.1007/7651_2014_117 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pukana Jayaraman
    • 1
    • 2
  • Vijayendran Govindasamy
    • 1
  • Nareshwaran Gnanasegaran
    • 1
    • 3
  • Wijenthiran Kunasekaran
    • 1
    • 2
  • Punitha Vasanthan
    • 1
    • 2
  • Sabri Musa
    • 2
  • Noor Hayaty Abu Kasim
    • 3
  1. 1.GMP compliant Stem Cells Laboratory, Hygieia Innovation Sdn. BhdFederal Territory of PutrajayaPutrajayaMalaysia
  2. 2.Department of Paediatric Dentistry and Orthodontics, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Restorative Dentistry, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations