Clinical Oral Investigations

, Volume 19, Issue 9, pp 2273–2283

Downregulation of CRNN gene and genomic instability at 1q21.3 in oral squamous cell carcinoma

  • Iman Salahshourifar
  • Vui King Vincent-Chong
  • Hong-Yun Chang
  • Hooi Leng Ser
  • Anand Ramanathan
  • Thomas George Kallarakkal
  • Zainal Ariff Abdul Rahman
  • Siti Mazlipah Ismail
  • Narayanan Prepageran
  • Wan Mahadzir Wan Mustafa
  • Mannil Thomas Abraham
  • Keng Kiong Tay
  • Rosnah Binti Zain
Original Article



This study includes the direct sequencing of cornulin (CRNN) gene to elucidate the possible mechanism of CRNN downregulation and explore the genetic imbalances at 1q21.3 across oral squamous cell carcinoma (OSCC) samples.

Materials and methods

In mutation screening of CRNN gene, gDNA from OSCC tissues were extracted, amplified, and followed by direct sequencing. OSCC samples were also subjected to fragment analysis on CRNN gene to investigate its microsatellite instability (MSI) and loss of heterozygosity (LOH). Immunohistochemistry was performed to validate CRNN downregulation in OSCC samples.


No pathogenic mutation was found in CRNN gene, while high frequency of allelic imbalances was found at 1q21.3 region. MSI was found more frequent (25.3 %) than LOH (9.3 %). Approximately 22.6 % of cases had high MSI which reflects higher probability of inactivation of DNA mismatch repair genes. MSI showed significant association with no betel quid chewing (p = 0.003) and tongue subsite (p = 0.026). LOH was associated with ethnicity (p = 0.008) and advanced staging (p = 0.039). The LOH at 1q21.3 was identified to be as an independent prognostic marker in OSCC (HRR = 7.15 (95 % CI, 1.41–36.25), p = 0.018). Downregulation of CRNN was found among MSI-positive OSCCs and was associated with poor prognosis (p = 0.044).


This study showed a significant correlation between LOH/MSI at 1q21.3 with clinical outcomes and that downregulation of CRNN gene could be considered as a prognostic marker of OSCC.

Clinical relevance

Insights of the downregulation mode of CRNN gene lays the basis of drug development on this gene as well as revealing its prognostic value.


Oral squamous cell carcinoma CRNN gene Genetic instability 1q23.1. LOH/MSI 


  1. 1.
    Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316. doi:10.1016/j.oraloncology.2008.06.002 CrossRefPubMedGoogle Scholar
  2. 2.
    Neville BW, Day TA (2002) Oral cancer and precancerous lesions. CA Cancer J Clin 52(4):195–215CrossRefPubMedGoogle Scholar
  3. 3.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107 CrossRefPubMedGoogle Scholar
  4. 4.
    de Martel C, Franceschi S (2009) Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol 70(3):183–194. doi:10.1016/j.critrevonc.2008.07.021 CrossRefPubMedGoogle Scholar
  5. 5.
    Maru DM, Luthra R, Correa AM, White-Cross J, Anandasabapathy S, Krishnan S, Guha S, Komaki R, Swisher SG, Ajani JA, Hofstetter WL, Rashid A (2009) Frequent loss of heterozygosity of chromosome 1q in esophageal adenocarcinoma: loss of chromosome 1q21.3 is associated with shorter overall survival. Cancer 115(7):1576–1585. doi:10.1002/cncr.24122 CrossRefPubMedGoogle Scholar
  6. 6.
    Chen YJ, Vortmeyer A, Zhuang Z, Huang S, Jensen RT (2003) Loss of heterozygosity of chromosome 1q in gastrinomas: occurrence and prognostic significance. Cancer Res 63(4):817–823PubMedGoogle Scholar
  7. 7.
    Yang YM, Liu TH, Chen YJ, Jiang WJ, Qian JM, Lu X, Gao J, Wu SF, Sang XT, Chen J (2005) Chromosome 1q loss of heterozygosity frequently occurs in sporadic insulinomas and is associated with tumor malignancy. Int J Cancer J 117(2):234–240. doi:10.1002/ijc.21175 CrossRefGoogle Scholar
  8. 8.
    Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, Rahman ZA, Ismail SM, Zaini ZM, Prepageran N, Kallarakkal TG, Ramanathan A, Mohayadi NA, Rosli NS, Mustafa WM, Abraham MT, Tay KK, Zain RB (2013) Genome wide analysis of chromosomal alterations in oral squamous cell carcinomas revealed over expression of MGAM and ADAM9. PLoS One 8(2):e54705. doi:10.1371/journal.pone.0054705 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Marenholz I, Zirra M, Fischer DF, Backendorf C, Ziegler A, Mischke D (2001) Identification of human epidermal differentiation complex (EDC)-encoded genes by subtractive hybridization of entire YACs to a gridded keratinocyte cDNA library. Genome Res 11(3):341–355. doi:10.1101/gr.114801 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kimchi ET, Posner MC, Park JO, Darga TE, Kocherginsky M, Karrison T, Hart J, Smith KD, Mezhir JJ, Weichselbaum RR, Khodarev NN (2005) Progression of Barrett’s metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. Cancer Res 65(8):3146–3154. doi:10.1158/0008-5472.CAN-04-2490 PubMedGoogle Scholar
  11. 11.
    Luthra MG, Ajani JA, Izzo J, Ensor J, Wu TT, Rashid A, Zhang L, Phan A, Fukami N, Luthra R (2007) Decreased expression of gene cluster at chromosome 1q21 defines molecular subgroups of chemoradiotherapy response in esophageal cancers. Clin Cancer Res Off J Am Assoc Cancer Res 13(3):912–919. doi:10.1158/1078-0432.CCR-06-1577 CrossRefGoogle Scholar
  12. 12.
    Nelson L, Anderson S, Archibald AL, Rhind S, Lu ZH, Condie A, McIntyre N, Thompson J, Nenutil R, Vojtesek B, Whitelaw CB, Little TJ, Hupp T (2008) An animal model to evaluate the function and regulation of the adaptively evolving stress protein SEP53 in oesophageal bile damage responses. Cell Stress Chaperones 13(3):375–385. doi:10.1007/s12192-008-0037-1 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Jaber MA, Porter SR, Gilthorpe MS, Bedi R, Scully C (1999) Risk factors for oral epithelial dysplasia—the role of smoking and alcohol. Oral Oncol 35(2):151–156CrossRefPubMedGoogle Scholar
  14. 14.
    Pentenero M, Broccoletti R, Carbone M, Conrotto D, Gandolfo S (2008) The prevalence of oral mucosal lesions in adults from the Turin area. Oral Dis 14(4):356–366. doi:10.1111/j.1601-0825.2007.01391.x CrossRefPubMedGoogle Scholar
  15. 15.
    Thomas G, Hashibe M, Jacob BJ, Ramadas K, Mathew B, Sankaranarayanan R, Zhang ZF (2003) Risk factors for multiple oral premalignant lesions. Int J Cancer 107(2):285–291. doi:10.1002/ijc.11383 CrossRefPubMedGoogle Scholar
  16. 16.
    Xu Z, Wang MR, Xu X, Cai Y, Han YL, Wu KM, Wang J, Chen BS, Wang XQ, Wu M (2000) Novel human esophagus-specific gene c1orf10: cDNA cloning, gene structure, and frequent loss of expression in esophageal cancer. Genomics 69(3):322–330. doi:10.1006/geno.2000.6344 CrossRefPubMedGoogle Scholar
  17. 17.
    Kupfer DM, White VL, Jenkins MC, Burian D (2010) Examining smoking-induced differential gene expression changes in buccal mucosa. BMC Med Genet 3:24. doi:10.1186/1755-8794-3-24 Google Scholar
  18. 18.
    Chen K, Li Y, Dai Y, Li J, Qin Y, Zhu Y, Zeng T, Ban X, Fu L, Guan XY (2013) Characterization of tumor suppressive function of cornulin in esophageal squamous cell carcinoma. PLoS One 8(7):e68838. doi:10.1371/journal.pone.0068838 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Imai FL, Uzawa K, Nimura Y, Moriya T, Imai MA, Shiiba M, Bukawa H, Yokoe H, Tanzawa H (2005) Chromosome 1 open reading frame 10 (C1orf10) gene is frequently down-regulated and inhibits cell proliferation in oral squamous cell carcinoma. Int J Biochem Cell Biol 37(8):1641–1655. doi:10.1016/j.biocel.2005.02.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Lieden A, Ekelund E, Kuo IC, Kockum I, Huang CH, Mallbris L, Lee SP, Seng LK, Chin GY, Wahlgren CF, Palmer CN, Bjorksten B, Stahle M, Nordenskjold M, Bradley M, Chua KY, D’Amato M (2009) Cornulin, a marker of late epidermal differentiation, is down-regulated in eczema. Allergy 64(2):304–311. doi:10.1111/j.1398-9995.2008.01856.x CrossRefPubMedGoogle Scholar
  21. 21.
    Zain RB, Athirajan V, Ghani WM, Razak IA, Raja Latifah RJ, Ismail SM, Sallam AA, Bustam AZ, Rahman ZA, Hussien A, Talib N, Cheong SC, Jallaludin A (2013) An oral cancer biobank initiative: a platform for multidisciplinary research in a developing country. Cell Tissue Bank 14(1):45–52. doi:10.1007/s10561-012-9298-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Sobin LH, Gospodarowicz MK, Wittekind C (2009) TNM classification of malignant tumours. Wiley, Chichester, West Sussex, UKGoogle Scholar
  23. 23.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  24. 24.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, pp 95–98Google Scholar
  25. 25.
    Shi X, Li J, Li A, Lv S, Xu G (2006) Simultaneous analysis of microsatellite instability and loss of heterozygosity by capillary electrophoresis with a homemade kit. J Chromatogr B Anal Technol Biomed Life Sci 834(1–2):122–127. doi:10.1016/j.jchromb.2006.02.052 CrossRefGoogle Scholar
  26. 26.
    Shen Z (2011) Genomic instability and cancer: an introduction. J Mol Cell Biol 3(1):1–3. doi:10.1093/jmcb/mjq057 CrossRefPubMedGoogle Scholar
  27. 27.
    Botchkarev VA, Gdula MR, Mardaryev AN, Sharov AA, Fessing MY (2012) Epigenetic regulation of gene expression in keratinocytes. J Investig Dermatol 132(11):2505–2521. doi:10.1038/jid.2012.182 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Elder JT, Zhao X (2002) Evidence for local control of gene expression in the epidermal differentiation complex. Exp Dermatol 11(5):406–412CrossRefPubMedGoogle Scholar
  29. 29.
    Kypriotou M, Huber M, Hohl D (2012) The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the ‘fused genes’ family. Exp Dermatol 21(9):643–649. doi:10.1111/j.1600-0625.2012.01472.x CrossRefPubMedGoogle Scholar
  30. 30.
    Tsui IF, Poh CF, Garnis C, Rosin MP, Zhang L, Lam WL (2009) Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer 125(9):2219–2228. doi:10.1002/ijc.24611 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Garnis C, Chari R, Buys TP, Zhang L, Ng RT, Rosin MP, Lam WL (2009) Genomic imbalances in precancerous tissues signal oral cancer risk. Mol Cancer 8:50. doi:10.1186/1476-4598-8-50 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Mao L, Lee JS, Fan YH, Ro JY, Batsakis JG, Lippman S, Hittelman W, Hong WK (1996) Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med 2(6):682–685CrossRefPubMedGoogle Scholar
  33. 33.
    Ishwad CS, Ferrell RE, Rossie KM, Appel BN, Johnson JT, Myers EN, Law JC, Srivastava S, Gollin SM (1995) Microsatellite instability in oral cancer. Int J Cancer 64(5):332–335CrossRefPubMedGoogle Scholar
  34. 34.
    Mahale A, Saranath D (2000) Microsatellite alterations on chromosome 9 in chewing tobacco-induced oral squamous cell carcinomas from India. Oral Oncol 36(2):199–206CrossRefPubMedGoogle Scholar
  35. 35.
    Vazquez-Mena O, Medina-Martinez I, Juárez-Torres E, Barrón V, Espinosa A, Villegas-Sepulveda N, Gómez-Laguna L, Nieto-Martínez K, Orozco L, Roman-Basaure E (2012) Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines. PLoS One 7(3):e32667PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Kakimoto Y, Numasawa H, Yamamoto N, Takeda E, Yamauchi T, Shibahara T (2007) Loss of heterozygosity and microsatellite instability on the long arm of chromosome 2 in human oral squamous cell carcinoma. Dent Jpn 43:70–73Google Scholar
  37. 37.
    Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 7(3):153–162. doi:10.1038/nrclinonc.2009.237 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Czerninski R, Krichevsky S, Ashhab Y, Gazit D, Patel V, Ben-Yehuda D (2009) Promoter hypermethylation of mismatch repair genes, hMLH1 and hMSH2 in oral squamous cell carcinoma. Oral Dis 15(3):206–213. doi:10.1111/j.1601-0825.2008.01510.x CrossRefPubMedGoogle Scholar
  39. 39.
    Shin KH, Park KH, Hong HJ, Kim JM, Oh JE, Choung PH, Min BM (2002) Prevalence of microsatellite instability, inactivation of mismatch repair genes, p53 mutation, and human papillomavirus infection in Korean oral cancer patients. Int J Oncol 21(2):297–302PubMedGoogle Scholar
  40. 40.
    Piccinin S, Gasparotto D, Vukosavljevic T, Barzan L, Sulfaro S, Maestro R, Boiocchi M (1998) Microsatellite instability in squamous cell carcinomas of the head and neck related to field cancerization phenomena. Br J Cancer 78(9):1147–1151PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Jin YT, Myers J, Tsai ST, Goepfert H, Batsakis JG, el-Naggar AK (1999) Genetic alterations in oral squamous cell carcinoma of young adults. Oral Oncol 35(3):251–256CrossRefPubMedGoogle Scholar
  42. 42.
    Chen L, Wong MP, Cheung LK, Samaranayake LP, Baum L, Samman N (2005) Frequent allelic loss of 21q11.1 approximately q21.1 region in advanced stage oral squamous cell carcinoma. Cancer Genet Cytogenet 159(1):37–43. doi:10.1016/j.cancergencyto.2004.09.011 CrossRefPubMedGoogle Scholar
  43. 43.
    Hsu PK, Kao HL, Chen HY, Yen CC, Wu YC, Hsu WH, Chou TY (2014) Loss of CRNN expression is associated with advanced tumor stage and poor survival in patients with esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg 147(5):1612–1618. doi:10.1016/j.jtcvs.2013.09.066, e1614CrossRefPubMedGoogle Scholar
  44. 44.
    Pawar H, Maharudraiah J, Kashyap MK, Sharma J, Srikanth SM, Choudhary R, Chavan S, Sathe G, Manju HC, Kumar KV, Vijayakumar M, Sirdeshmukh R, Harsha HC, Prasad TS, Pandey A, Kumar RV (2013) Downregulation of cornulin in esophageal squamous cell carcinoma. Acta Histochem 115(2):89–99. doi:10.1016/j.acthis.2012.04.003 CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang W, Chen X, Luo A, Lin D, Tan W, Liu Z (2009) Genetic variants of C1orf10 and risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Sci 100(9):1695–1700. doi:10.1111/j.1349-7006.2009.01240.x CrossRefPubMedGoogle Scholar
  46. 46.
    Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28(6):771–776. doi:10.1093/bioinformatics/bts043 CrossRefPubMedGoogle Scholar
  47. 47.
    Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43(10):1529–1544. doi:10.1016/j.ejca.2007.04.002 CrossRefPubMedGoogle Scholar
  48. 48.
    Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104(9):3300–3305. doi:10.1073/pnas.0611347104 PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Ziebarth JD, Bhattacharya A, Cui Y (2012) Integrative analysis of somatic mutations altering microRNA targeting in cancer genomes. PLoS One 7(10):e47137. doi:10.1371/journal.pone.0047137 PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Martin P, Makepeace K, Hill SA, Hood DW, Moxon ER (2005) Microsatellite instability regulates transcription factor binding and gene expression. Proc Natl Acad Sci U S A 102(10):3800–3804. doi:10.1073/pnas.0406805102 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Iman Salahshourifar
    • 1
  • Vui King Vincent-Chong
    • 1
  • Hong-Yun Chang
    • 1
  • Hooi Leng Ser
    • 1
  • Anand Ramanathan
    • 1
    • 2
  • Thomas George Kallarakkal
    • 1
    • 2
  • Zainal Ariff Abdul Rahman
    • 1
    • 2
  • Siti Mazlipah Ismail
    • 1
    • 2
  • Narayanan Prepageran
    • 1
    • 3
  • Wan Mahadzir Wan Mustafa
    • 4
  • Mannil Thomas Abraham
    • 5
  • Keng Kiong Tay
    • 6
  • Rosnah Binti Zain
    • 1
    • 2
  1. 1.Oral Cancer Research and Coordinating Centre, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Otorhinolaringology, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  4. 4.Department of Oral and Maxillofacial Surgery, Hospital Kuala LumpurMinistry of Health MalaysiaKuala LumpurMalaysia
  5. 5.Department of Oral and Maxillofacial Surgery, Hospital Tengku Ampuan RahimahMinistry of Health MalaysiaKlangMalaysia
  6. 6.Department of Oral Surgery, Hospital Umum SarawakMinistry of Health MalaysiaKuchingMalaysia

Personalised recommendations