Clinical Oral Investigations

, Volume 19, Issue 6, pp 1473–1483 | Cite as

Tridimensional surface roughness analysis after resin infiltration of (deproteinized) natural subsurface carious lesions

  • Ina Ulrich
  • Jan Mueller
  • Michael Wolgin
  • Wilhelm Frank
  • Andrej M. Kielbassa
Original Article



The objectives of this study were to evaluate ex vivo the effects of resin infiltration on the areal surface roughness of natural non-cavitated proximal subsurface lesions with or without previous deproteinization and to determine differences between E2 and D1 lesions or between premolars and molars.

Materials and methods

Forty premolars and 40 molars with proximal carious lesions and macroscopically intact surfaces (International Caries Detection and Assessment System (ICDAS) II; code 2) were radiologically assessed and randomly allocated to four groups (with 20 E2 and 20 D1 lesions, respectively). In each group, 10 lesions were deproteinized (NaOCl; 1 %) before etching (HCl; 15 %) and resin infiltration (Icon). Areal surface roughness (Sa) at the most demineralized lesion part (DIAGNOdent) was evaluated topometrically before and after deproteinization, after etching, and after infiltration using focus variation 3D scanning microscopy.


Pretreatment with NaOCl (n = 40) had no significant effects on Sa (p = 0.208), but resulted in significantly differing Sa values between premolars and molars after etching (p = 0.011). Regarding the effects between etching and baseline, significantly differing Sa values (p = 0.0498) were found for premolars and molars (n = 40/40); Sa after resin infiltration (compared to etching) differed significantly between premolars and molars (p = 0.009). No treatment regimen lead to differences among the radiological grades (E2 vs. D1; p > 0.106).


Resin infiltration showed only minor effects on Sa values of etched subsurface lesions (p < 0.170) and did neither equal nor improve baseline surface roughness (p > 0.401) of the different tooth types.

Clinical relevance

Deproteinization should be recommended before etching and infiltration, even if surface roughness of infiltrated advanced (pre-)molar lesions will not be improved.


Resin infiltration Focus variation White spot lesion Surface roughness Sodium hypochlorite Natural subsurface lesion 



The authors are indebted to Annette Steinke and Rainer Toll (Department of Operative Dentistry and Periodontology, CharitéCentrum 3, Charité - Universitätsmedizin Berlin, Germany) for their excellent cooperation with the experimental work. Jan Mueller and Andrej M. Kielbassa are appointed as inventors of US, European, Japanese, Russian, and Korean patents (held by Charité - Universitätsmedizin Berlin, Germany) for the infiltration technique for carious lesions and receive royalties from DMG, Hamburg, Germany.

Conflict of interests

None of the authors is involved in a potential conflict of interests. Relationship between authors (JM; AMK) and manufacturer (DMG) has been disclosed in Acknowledgments.

Disclosure of source of funding

No external funding, apart from the support of the authors’ institutions, was available for this investigator-initiated study.


  1. 1.
    Kielbassa AM, Muller J, Gernhardt CR (2009) Closing the gap between oral hygiene and minimally invasive dentistry: a review on the resin infiltration technique of incipient (proximal) enamel lesions. Quintessence Int 40:663–681PubMedGoogle Scholar
  2. 2.
    Kielbassa AM, Ulrich I, Treven L, Mueller J (2010) An updated review on the resin infiltration technique of incipient proximal enamel lesions. Med Evol 16:3–15Google Scholar
  3. 3.
    Paris S, Meyer-Lueckel H, Kielbassa AM (2007) Resin infiltration of natural caries lesions. J Dent Res 86:662–666. doi: 10.1177/154405910708600715 PubMedCrossRefGoogle Scholar
  4. 4.
    Gomez SS, Basili CP, Emilson CG (2005) A 2-year clinical evaluation of sealed noncavitated approximal posterior carious lesions in adolescents. Clin Oral Investig 9:239–243. doi: 10.1007/s00784-005-0010-7 PubMedCrossRefGoogle Scholar
  5. 5.
    Martignon S, Ekstrand KR, Ellwood R (2006) Efficacy of sealing proximal early active lesions: an 18-month clinical study evaluated by conventional and subtraction radiography. Caries Res 40:382–388. doi: 10.1159/000094282 PubMedCrossRefGoogle Scholar
  6. 6.
    Martignon S, Tellez M, Santamaria RM, Gomez J, Ekstrand KR (2010) Sealing distal proximal caries lesions in first primary molars: efficacy after 2.5 years. Caries Res 44:562–570. doi: 10.1159/000321986 PubMedCrossRefGoogle Scholar
  7. 7.
    Abuchaim C, Rotta M, Grande RH, Loguercio AD, Reis A (2010) Effectiveness of sealing active proximal caries lesions with an adhesive system: 1-year clinical evaluation. Braz Oral Res 24:361–367. doi: 10.1590/S1806-83242010000300017 PubMedCrossRefGoogle Scholar
  8. 8.
    Ekstrand KR, Bakhshandeh A, Martignon S (2010) Treatment of proximal superficial caries lesions on primary molar teeth with resin infiltration and fluoride varnish versus fluoride varnish only: efficacy after 1 year. Caries Res 44:41–46. doi: 10.1159/000275573 PubMedCrossRefGoogle Scholar
  9. 9.
    Martignon S, Ekstrand KR, Gomez J, Lara JS, Cortes A (2012) Infiltrating/sealing proximal caries lesions: a 3-year randomized clinical trial. J Dent Res 91:288–292. doi: 10.1177/0022034511435328 PubMedCrossRefGoogle Scholar
  10. 10.
    Pancu G, Ilie M, Andrian S, Iovan G, Topoliceanu C, Pancu I, Gheorghe A, Moldovanu A, Stoleriu S (2012) Clinical and radiographical study regarding treatment of incipient carious lesions with Icon infiltration method. Rom J Oral Rehabil 4:43–47Google Scholar
  11. 11.
    Altarabulsi MB, Alkilzy M, Petrou MA, Splieth C (2014) Clinical safety, quality and effect of resin infiltration for proximal caries. Eur J Paediatr Dent 15:39–44PubMedGoogle Scholar
  12. 12.
    Meyer-Lueckel H, Bitter K, Paris S (2012) Randomized controlled clinical trial on proximal caries infiltration: three-year follow-up. Caries Res 46:544–548. doi: 10.1159/000341807 PubMedCrossRefGoogle Scholar
  13. 13.
    Paris S, Bitter K, Naumann M, Dorfer CE, Meyer-Lueckel H (2011) Resin infiltration of proximal caries lesions differing in ICDAS codes. Eur J Oral Sci 119:182–186. doi: 10.1111/j.1600-0722.2011.00807.x PubMedCrossRefGoogle Scholar
  14. 14.
    Field J, Waterhouse P, German M (2010) Quantifying and qualifying surface changes on dental hard tissues in vitro. J Dent 38:182–190. doi: 10.1016/j.jdent.2010.01.002 PubMedCrossRefGoogle Scholar
  15. 15.
    Bollen CM, Lambrechts P, Quirynen M (1997) Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 13:258–269PubMedCrossRefGoogle Scholar
  16. 16.
    Mueller J, Yang F, Neumann K, Kielbassa AM (2011) Surface tridimensional topography analysis of materials and finishing procedures after resinous infiltration of subsurface bovine enamel lesions. Quintessence Int 42:135–147PubMedGoogle Scholar
  17. 17.
    Taher NM (2013) Atomic force microscopy and tridimensional topography analysis of human enamel after resinous infiltration and storage in water. Saudi Med J 34:408–414PubMedGoogle Scholar
  18. 18.
    Mejare I, Malmgren B (1986) Clinical and radiographic appearance of proximal carious lesions at the time of operative treatment in young permanent teeth. Scand J Dent Res 94:19–26PubMedGoogle Scholar
  19. 19.
    Kielbassa AM, Paris S, Lussi A, Meyer-Lueckel H (2006) Evaluation of cavitations in proximal caries lesions at various magnification levels in vitro. J Dent 34:817–822. doi: 10.1016/j.jdent.2006.04.001 PubMedCrossRefGoogle Scholar
  20. 20.
    Kielbassa AM, Gillmann L, Zantner C, Meyer-Lueckel H, Hellwig E, Schulte-Monting J (2005) Profilometric and microradiographic studies on the effects of toothpaste and acidic gel abrasivity on sound and demineralized bovine dental enamel. Caries Res 39:380–386. doi: 10.1159/000086844 PubMedCrossRefGoogle Scholar
  21. 21.
    da Silva Neto JM, dos Santos RL, Sampaio MC, Sampaio FC, Passos IA (2008) Radiographic diagnosis of incipient proximal caries: an ex-vivo study. Braz Dent J 19:97–102. doi: 10.1590/S0103-64402008000200002 PubMedCrossRefGoogle Scholar
  22. 22.
    Eli I, Weiss EI, Tzohar A, Littner MM, Gelernter I, Kaffe I (1996) Interpretation of bitewing radiographs. Part 1. Evaluation of the presence of approximal lesions. J Dent 24:379–383. doi: 10.1016/0300-5712(95)00111-5 PubMedCrossRefGoogle Scholar
  23. 23.
    Robinson C, Hallsworth AS, Shore RC, Kirkham J (1990) Effect of surface zone deproteinisation on the access of mineral ions into subsurface carious lesions of human enamel. Caries Res 24:226–230. doi: 10.1159/000261272 PubMedCrossRefGoogle Scholar
  24. 24.
    Barbosa de Sousa F, Dias Soares J, Sampaio Vianna S (2013) Natural enamel caries: a comparative histological study on biochemical volumes. Caries Res 47:183–192. doi: 10.1159/000345378 PubMedCrossRefGoogle Scholar
  25. 25.
    Espinosa R, Valencia R, Uribe M, Ceja I, Saadia M (2008) Enamel deproteinization and its effect on acid etching: an in vitro study. J Clin Pediatr Dent 33:13–19PubMedCrossRefGoogle Scholar
  26. 26.
    Fedorowicz Z, Nasser M, Sequeira-Byron P, de Souza RF, Carter B, Heft M (2012) Irrigants for non-surgical root canal treatment in mature permanent teeth. Cochrane Database Syst Rev 9:CD008948. doi: 10.1002/14651858.CD008948.pub2 PubMedGoogle Scholar
  27. 27.
    Chay PL, Manton DJ, Palamara JE (2014) The effect of resin infiltration and oxidative pre-treatment on microshear bond strength of resin composite to hypomineralised enamel. Int J Paediatr Dent 24:252–267. doi: 10.1111/ipd.12069 PubMedCrossRefGoogle Scholar
  28. 28.
    Central German Ethics Committee (2003) The use of human body materials for the purposes of medical research. Accessed 09 Nov 2014
  29. 29.
    Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, Pitts NB (2007) The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol 35:170–178. doi: 10.1111/j.1600-0528.2007.00347.x PubMedCrossRefGoogle Scholar
  30. 30.
    Huth KC, Lussi A, Gygax M, Thum M, Crispin A, Paschos E, Hickel R, Neuhaus KW (2010) In vivo performance of a laser fluorescence device for the approximal detection of caries in permanent molars. J Dent 38:1019–1026. doi: 10.1016/j.jdent.2010.09.001 PubMedCrossRefGoogle Scholar
  31. 31.
    Yang F, Mueller J, Kielbassa AM (2012) Surface substance loss of subsurface bovine enamel lesions after different steps of the resinous infiltration technique: a 3D topography analysis. Odontology 100:172–180. doi: 10.1007/s10266-011-0031-4 PubMedCrossRefGoogle Scholar
  32. 32.
    ISO International Organization for Standardization. Accessed 09 Nov 2014
  33. 33.
    Backer Dirks O (1966) Posteruptive changes in dental enamel. J Dent Res 45:503–511CrossRefGoogle Scholar
  34. 34.
    Ferreira Zandona A, Santiago E, Eckert GJ, Katz BP, Pereira de Oliveira S, Capin OR, Mau M, Zero DT (2012) The natural history of dental caries lesions: a 4-year observational study. J Dent Res 91:841–846. doi: 10.1177/0022034512455030 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Silverstone LM, Hicks MJ, Featherstone MJ (1988) Dynamic factors affecting lesion initiation and progression in human dental enamel. Part I. The dynamic nature of enamel caries. Quintessence Int 19:683–711PubMedGoogle Scholar
  36. 36.
    Cross SE, Kreth J, Wali RP, Sullivan R, Shi W, Gimzewski JK (2009) Evaluation of bacteria-induced enamel demineralization using optical profilometry. Dent Mater 25:1517–1526. doi: 10.1016/ PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Aykent F, Yondem I, Ozyesil AG, Gunal SK, Avunduk MC, Ozkan S (2010) Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J Prosthet Dent 103:221–227. doi: 10.1016/S0022-3913(10)60034-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Mei L, Busscher HJ, van der Mei HC, Ren Y (2011) Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent Mater 27:770–778. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  39. 39.
    Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S (2012) Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur J Oral Sci 120:458–465. doi: 10.1111/j.1600-0722.2012.00983.x PubMedCrossRefGoogle Scholar
  40. 40.
    Konishi N, Torii Y, Kurosaki A, Takatsuka T, Itota T, Yoshiyama M (2003) Confocal laser scanning microscopic analysis of early plaque formed on resin composite and human enamel. J Oral Rehabil 30:790–795. doi: 10.1046/j.1365-2842.2003.01129.x PubMedCrossRefGoogle Scholar
  41. 41.
    Beyth N, Bahir R, Matalon S, Domb AJ, Weiss EI (2008) Streptococcus mutans biofilm changes surface-topography of resin composites. Dent Mater 24:732–736. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  42. 42.
    Padovani G, Fucio S, Ambrosano G, Sinhoreti M, Puppin-Rontani R (2014) In situ surface biodegradation of restorative materials. Oper Dent 39:349–360. doi: 10.2341/13-089-C PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ina Ulrich
    • 1
    • 2
  • Jan Mueller
    • 3
  • Michael Wolgin
    • 1
  • Wilhelm Frank
    • 4
  • Andrej M. Kielbassa
    • 1
  1. 1.Centre for Operative Dentistry, Periodontology, and EndodontologyUniversity of Dental Medicine and Oral Health, Danube Private University (DPU)KremsAustria
  2. 2.Department of Operative Dentistry and PeriodontologyUniversity School of Dentistry, Charité - Universitätsmedizin BerlinBerlinGermany
  3. 3.Private Dental SurgeryBerlinGermany
  4. 4.Centre for Preclinical Education, Dept. of BiostatisticsUniversity of Dental Medicine and Oral Health, Danube Private University (DPU)KremsAustria

Personalised recommendations