Advertisement

Clinical Oral Investigations

, Volume 19, Issue 6, pp 1279–1288 | Cite as

Periosteal microcirculatory reactions in a zoledronate-induced osteonecrosis model of the jaw in rats

  • Ágnes Janovszky
  • Andrea SzabóEmail author
  • Renáta Varga
  • Dénes Garab
  • Mihály Boros
  • Csilla Mester
  • Nikolett Beretka
  • Tamás Zombori
  • Hans-Peter Wiesmann
  • Ricardo Bernhardt
  • Imre Ocsovszki
  • Péter Balázs
  • József Piffkó
Original Article

Abstract

Objectives

Nitrogen-containing bisphosphonates induce osteonecrosis mostly in the jaw and less frequently in other bones. Because of the crucial role of periosteal perfusion in bone repair, we investigated zoledronate-induced microcirculatory reactions in the mandibular periosteum in comparison with those in the tibia in a clinically relevant model of bisphosphonate-induced medication-related osteonecrosis of the jaw (MRONJ).

Materials and methods

Sprague–Dawley rats were treated with zoledronate (ZOL; 80 i.v. μg/kg/week over 8 weeks) or saline vehicle. The first two right mandibular molar teeth were extracted after 3 weeks. Various systemic and local (periosteal) microcirculatory inflammatory parameters were examined by intravital videomicroscopy after 9 weeks.

Results

Gingival healing disorders (∼100 %) and MRONJ developed in 70 % of ZOL-treated cases but not after saline (shown by micro-CT). ZOL induced significantly higher degrees of periosteal leukocyte rolling and adhesion in the mandibular postcapillary venules (at both extraction and intact sites) than at the tibia. Leukocyte NADPH-oxidase activity was reduced; leukocyte CD11b and plasma TNF-alpha levels were unchanged.

Conclusion

Chronic ZOL treatment causes a distinct microcirculatory inflammatory reaction in the mandibular periosteum but not in the tibia. The local reaction in the absence of augmented systemic leukocyte inflammatory activity suggests that topically different, endothelium-specific changes may play a critical role in the pathogenesis of MRONJ.

Clinical relevance

This model permits for the first time to explore the microvascular processes in the mandibular periosteum after chronic ZOL treatment. This approach may contribute to a better understanding of the pathomechanism and the development of strategies to counteract bisphosphonate-induced side effects.

Keywords

Mandibular periosteum Intravital fluorescence videomicroscopy Leukocytes Inflammation Bisphosphonate Osteonecrosis 

Notes

Acknowledgments

This publication is supported by the European Union and co-funded by the European Social Fund. Research grants: TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program—Elaborating and operating an inland student and researcher personal support system convergence program;” TÁMOP 4.2.1/B-09/1/KONV-2010-0005; TÁMOP 4.2.2A-11/1/KONV-2012-0035; TÁMOP 4.2.2A-11/1/KONV-2012-0073 “Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences,” and OTKA 109388.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Brozoski MA, Traina AA, Deboni MC, Marques MM, Naclério-Homem Mda G (2012) Bisphosphonate-related osteonecrosis of the jaw. Rev Bras Reumatol 52(2):265–270. doi: 10.1590/S0482-50042012000200010 PubMedCrossRefGoogle Scholar
  2. 2.
    Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61(9):1115–1117. doi: 10.1016/S0278-2391(03)00720-1 PubMedCrossRefGoogle Scholar
  3. 3.
    Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B (2009) Task force on bisphosphonate-related osteonecrosis of the jaws, American Association of Oral and Maxillofacial Surgeons (2009) American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaw—2009 update. Aust Endod J 35(3):119–130. doi: 10.1111/j.1747-4477.2009.00213.x PubMedCrossRefGoogle Scholar
  4. 4.
    Wei X, Pushalkar S, Estilo C, Wong C, Farooki A, Fornier M, Bohle G, Huryn J, Li Y, Doty S, Saxena D (2012) Molecular profiling of oral microbiota in jawbone samples of bisphosphonate-related osteonecrosis of the jaw. Oral Dis 18(6):602–612. doi: 10.1111/j.1601-0825.2012.01916.x PubMedCrossRefGoogle Scholar
  5. 5.
    Calligeros D, Douglas P, Abeygunasekera S, Smith G (1993) Aseptic peritonitis in association with the use of pamidronate. Med J Aust 159(2):144PubMedGoogle Scholar
  6. 6.
    Norton JT, Hayashi T, Crain B, Corr M, Carson DA (2011) Role of IL-1 receptor-associated kinase-M (IRAK-M) in priming of immune and inflammatory responses by nitrogen bisphosphonates. Proc Natl Acad Sci U S A 108(27):11163–11168. doi: 10.1073/pnas.1107899108 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Zysk SP, Dürr HR, Gebhard HH, Schmitt-Sody M, Refior HJ, Messmer K, Veihelmann A (2003) Effects of ibandronate on inflammation in mouse antigen-induced arthritis. Inflamm Res 52(5):221–226. doi: 10.1007/s000110300075 PubMedGoogle Scholar
  8. 8.
    Anastasilakis AD, Polyzos SA, Makras P, Sakellariou GT, Bisbinas I, Gkiomisi A, Delaroudis S, Gerou S, Ballaouri I, Oikonomou D, Papapoulos SE (2012) Acute phase response following intravenous zoledronate in postmenopausal women with low bone mass. Bone 50(5):1130–1134. doi: 10.1016/j.bone.2012.02.006 PubMedCrossRefGoogle Scholar
  9. 9.
    Senel FC, Kadioglu Duman M, Muci E, Cankaya M, Pampu AA, Ersoz S, Gunhan O (2010) Jaw bone changes in rats after treatment with zoledronate and pamidronate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(3):385–391. doi: 10.1016/j.tripleo.2009.10.011 PubMedCrossRefGoogle Scholar
  10. 10.
    Schaser KD, Zhang L, Haas NP, Mittlmeier T, Duda G, Bail HJ (2003) Temporal profile of microvascular disturbances in rat tibial periosteum following closed soft tissue trauma. Langenbecks Arch Surg 388(5):323–330. doi: 10.1007/s00423-003-0411-5 PubMedCrossRefGoogle Scholar
  11. 11.
    Varga R, Janovszky A, Szabó A, Garab D, Bodnár D, Boros M, Neunzehn J, Wiesmann HP, Piffkó J (2014) A novel method for in vivo visualization of the microcirculation of the mandibular periosteum in rats. Microcirculation (in press) doi:  10.1111/micc.12128
  12. 12.
    Varga R, Török L, Szabó A, Kovács F, Keresztes M, Varga G, Kaszaki J, Boros M (2008) Effects of colloid solutions on ischemia-reperfusion-induced periosteal microcirculatory and inflammatory reactions: comparison of dextran, gelatin, and hydroxyethyl starch. Crit Care Med 36(10):2828–2837. doi: 10.1097/CCM.0b013e318186ff48 PubMedCrossRefGoogle Scholar
  13. 13.
    Bencsik P, Kupai K, Giricz Z, Görbe A, Pipis J, Murlasits Z, Kocsis GF, Varga-Orvos Z, Puskás LG, Csonka C, Csont T, Ferdinandy P (2010) Role of iNOS and peroxynitrite-matrix metalloproteinase-2 signaling in myocardial late preconditioning in rats. Am J Physiol 299(2):H512–518. doi: 10.1152/ajpheart.00052.2010 Google Scholar
  14. 14.
    Biasotto M, Chiandussi S, Zacchigna S, Moimas S, Dore F, Pozzato G, Cavalli F, Zanconati F, Contardo L, Giacca M, Di Lenarda R (2010) A novel animal model to study non-spontaneous bisphosphonates osteonecrosis of jaw. J Oral Pathol Med 39(5):390–396. doi: 10.1111/j.1600-0714.2009.00878.x PubMedGoogle Scholar
  15. 15.
    Barba-Recreo P, Del Castillo Pardo de Vera JL, García-Arranz M, Yébenes L, Burgueño M (2013) Zoledronic acid - Related osteonecrosis of the jaws. Experimental model with dental extractions in rats. J Craniomaxillofac Surg pii: S1010-5182(13)00304-1. doi:  10.1016/j.jcms.2013.11.005
  16. 16.
    Marx RE, Cillo JE Jr, Ulloa JJ (2007) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 65(12):2397–2410. doi: 10.1016/j.joms.2007.08.003 PubMedCrossRefGoogle Scholar
  17. 17.
    Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97(12):2692–2696. doi: 10.1172/JCI118722 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Maruotti N, Corrado A, Neve A, Cantatore FP (2012) Bisphosphonates: effects on osteoblast. Eur J Clin Pharmacol 68(7):1013–1018. doi: 10.1007/s00228-012-1216-7 PubMedCrossRefGoogle Scholar
  19. 19.
    Yamashita J, Koi K, Yang DY, McCauley LK (2011) Effect of zoledronate on oral wound healing in rats. Clin Cancer Res 17(6):1405–1414PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kobayashi Y, Hiraga T, Ueda A, Wang L, Matsumoto-Nakano M, Hata K, Yatani H, Yoneda T (2010) Zoledronic acid delays wound healing of the tooth extraction socket, inhibits oral epithelial cell migration, and promotes proliferation and adhesion to hydroxyapatite of oral bacteria, without causing osteonecrosis of the jaw, in mice. J Bone Miner Metab 28(2):165–175. doi: 10.1007/s00774-009-0128-9 PubMedCrossRefGoogle Scholar
  21. 21.
    Aguirre JI, Akhter MP, Kimmel DB, Pingel JE, Williams A, Jorgensen M, Kesavalu L, Wronski TJ (2012) Oncologic doses of zoledronic acid induce osteonecrosis of the jaw-like lesions in rice rats (Oryzomys palustris) with periodontitis. J Bone Miner Res 27(10):2130–2143. doi: 10.1002/jbmr.1669 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wood J, Bonjean K, Ruetz S, Bellahcène A, Devy L, Foidart JM, Castronovo V, Green JR (2002) Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 302(3):1055–1061. doi: 10.1124/jpet.102.035295 PubMedCrossRefGoogle Scholar
  23. 23.
    Pabst AM, Ziebart T, Ackermann M, Konerding MA, Walter C (2014) Bisphosphonates’ antiangiogenic potency in the development of bisphosphonate-associated osteonecrosis of the jaws: influence on microvessel sprouting in an in vivo 3D Matrigel assay. Clin Oral Investig 18(3):1015–1022. doi: 10.1007/s00784-013-1060-x PubMedCrossRefGoogle Scholar
  24. 24.
    Guevarra CS, Borke JL, Stevens MR, Bisch FC, Zakhary I, Messer R, Gerlach RC, Elsalanty ME (2013) Vascular alterations in the Sprague-Dawley rat mandible during intravenous bisphosphonate therapy. J Oral Implantol (in press) doi:  10.1563/AAID-JOI-D-13-00074
  25. 25.
    Reid IR, Bolland MJ, Grey AB (2007) Is bisphosphonate-associated osteonecrosis of the jaw caused by soft tissue toxicity? Bone 41(3):318–320. doi: 10.1016/j.bone.2007.04.196 PubMedCrossRefGoogle Scholar
  26. 26.
    Scheper MA, Badros A, Chaisuparat R, Cullen KJ, Meiller TF (2009) Effect of zoledronic acid on oral fibroblasts and epithelial cells: a potential mechanism of bisphosphonate-associated osteonecrosis. Br J Haematol 144(5):667–676. doi: 10.1111/j.1365-2141.2008.07504.x PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Açil Y, Möller B, Niehoff P, Rachko K, Gassling V, Wiltfang J, Simon MJ (2012) The cytotoxic effects of three different bisphosphonates in-vitro on human gingival fibroblasts, osteoblasts and osteogenic sarcoma cells. J Craniomaxillofac Surg 40(8):e229–235. doi: 10.1016/j.jcms.2011.10.024 PubMedCrossRefGoogle Scholar
  28. 28.
    Yamaguchi K, Motegi K, Iwakura Y, Endo Y (2000) Involvement of interleukin-1 in the inflammatory actions of aminobisphosphonates in mice. Br J Pharmacol 130(7):1646–1654. doi: 10.1038/sj.bjp.0703460 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yu YY, Lieu S, Hu D, Miclau T, Colnot C (2012) Site specific effects of zoledronic acid during tibial and mandibular fracture repair. PLoS One 7(2):e31771. doi: 10.1158/1078-0432.CCR-10-1614 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Koch FP, Wunsch A, Merkel C, Ziebart T, Pabst A, Yekta SS, Blessmann M, Smeets R (2011) The influence of bisphosphonates on human osteoblast migration and integrin aVb3/tenascin C gene expression in vitro. Head Face Med 7(1):4. doi: 10.1186/1746-160X-7-4 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Wen D, Qing L, Harrison G, Golub E, Akintoye SO (2011) Anatomic site variability in rat skeletal uptake and desorption of fluorescently labeled bisphosphonate. Oral Dis 17(4):427–432. doi: 10.1111/j.1601-0825.2010.01772.x PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Marolt D, Cozin M, Vunjak-Novakovic G, Cremers S, Landesberg R (2012) Effects of pamidronate on human alveolar osteoblasts in vitro. J Oral Maxillofac Surg 70(5):1081–1092. doi: 10.1016/j.joms.2011.05.002 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Çankaya M, Cizmeci Şenel F, Kadioglu Duman M, Muci E, Dayisoylu EH, Balaban F (2013) The effects of chronic zoledronate usage on the jaw and long bones evaluated using RANKL and osteoprotegerin levels in an animal model. Int J Oral Maxillofac Surg 42(9):1134–1139. doi: 10.1016/j.ijom.2013.02.008 PubMedCrossRefGoogle Scholar
  34. 34.
    Kuroshima S, Entezami P, McCauley LK, Yamashita J (2014) Early effects of parathyroid hormone on bisphosphonate/steroid-associated compromised osseous wound healing. Osteoporos Int 25(3):1141–1150. doi: 10.1007/s00198-013-2570-8 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Zhang L, Bail H, Mittlmeier T, Haas NP, Schaser KD (2003) Immediate microcirculatory derangements in skeletal muscle and periosteum after closed tibial fracture. J Trauma 54(5):979–985. doi: 10.1097/00005373-200305000-00022 PubMedCrossRefGoogle Scholar
  36. 36.
    Kuiper JW, Forster C, Sun C, Peel S, Glogauer M (2012) Zoledronate and pamidronate depress neutrophil functions and survival in mice. Br J Pharmacol 165(2):532–539. doi: 10.1111/j.1476-5381.2011.01592.x PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Yamagishi S, Matsui T, Nakamura K, Takeuchi M (2005) Minodronate, a nitrogen-containing bisphosphonate, inhibits advanced glycation end product-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation. Int J Tissue React 27(4):189–195PubMedGoogle Scholar
  38. 38.
    Favot CL, Forster C, Glogauer M (2013) The effect of bisphosphonate therapy on neutrophil function: a potential biomarker. Int J Oral Maxillofac Surg 42(5):619–626. doi: 10.1016/j.ijom.2012.12.011 PubMedCrossRefGoogle Scholar
  39. 39.
    Hagelauer N, Pabst AM, Ziebart T, Ulbrich H, Walter C (2014) In vitro effects of bisphosphonates on chemotaxis, phagocytosis, and oxidative burst of neutrophil granulocytes. Clin Oral Investig (in press) doi:  10.1007/s00784-014-1219-0
  40. 40.
    Eppihimer MJ, Granger DN (1997) Ischemia/reperfusion-induced leukocyte-endothelial interactions in postcapillary venules. Shock 8(1):16–25. doi: 10.1097/00024382-199707000-00004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ágnes Janovszky
    • 1
  • Andrea Szabó
    • 2
    Email author
  • Renáta Varga
    • 1
  • Dénes Garab
    • 2
  • Mihály Boros
    • 2
  • Csilla Mester
    • 2
  • Nikolett Beretka
    • 2
  • Tamás Zombori
    • 3
  • Hans-Peter Wiesmann
    • 4
  • Ricardo Bernhardt
    • 4
  • Imre Ocsovszki
    • 5
  • Péter Balázs
    • 6
  • József Piffkó
    • 1
  1. 1.Department of Oral and Maxillofacial SurgeryUniversity of SzegedSzegedHungary
  2. 2.Institute of Surgical ResearchUniversity of SzegedSzegedHungary
  3. 3.Department of PathologyUniversity of SzegedSzegedHungary
  4. 4.Institute of Materials Science, Max Bergmann Center of BiomaterialsTU DresdenDresdenGermany
  5. 5.Department of BiochemistryUniversity of SzegedSzegedHungary
  6. 6.Department of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary

Personalised recommendations