Clinical Oral Investigations

, Volume 19, Issue 1, pp 1–10 | Cite as

Role of implant diameter on long-term survival of dental implants placed in posterior maxilla: a systematic review

  • Fawad Javed
  • Georgios E. RomanosEmail author



We speculated that the long-term survival of narrow or conventional diameter (<5 mm) implants is higher than that of wide-diameter implants (≥5 mm) when placed in posterior atrophic maxillae. The aim of this paper was to systematically review indexed literature regarding the influence of implant diameter on long-term survival of dental implants placed in posterior maxilla.

Materials and methods

The addressed focused question was “Does implant diameter influence long-term survival of dental implants placed in posterior maxilla?” Databases were searched from 1986 till June 2014 using the following MeSH terms: “dental implants,” “dental implant-abutment design,” “maxilla,” and “survival.” Review articles, case reports, letters to the editor, unpublished data, and studies published in languages other than English were excluded. Reference list of potentially relevant original and review studies was hand-searched.


The initial search yielded 51 studies. Scrutiny of the titles and abstracts reduced the number of clinical studies included in the present review to 19. Mean age of the patients ranged between 37 and 60 years. Cylindrical and tapered implants were used in 12 and 3 studies, respectively. In all studies, threaded, rough-surfaced dental implants with diameters ranging between 3.0 and 5.5 mm were used. In all studies, follow-up periods and cumulative survival rates ranged between 5 and 15 years and 80.5 and 100 %, respectively.

Conclusion and clinical relevance

The role of implant diameter on long-term survival of dental implants placed in posterior maxilla is secondary. A well-designed surgical protocol, achievement of sufficient primary stability at the time of implant placement, and pre- and postsurgical oral hygiene maintenance visits are critical factors that influence the long-term survival of dental implants placed in posterior atrophic maxilla.


Dental implant Diameter Implant survival rate Posterior maxilla Maxillary tuberosity 


Conflict of interest

The authors declare that they have no conflict/s of interest related to the present study.


  1. 1.
    Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G (2008) The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent 100:422–431PubMedCrossRefGoogle Scholar
  2. 2.
    Santiago JFJ, Pellizzer EP, Verri FR, de Carvalho PS (2013) Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study. Mater Sci Eng C Mater Biol Appl 33:4700–4714CrossRefGoogle Scholar
  3. 3.
    Small PN, Tarnow DP (2000) Gingival recession around implants: a 1-year longitudinal prospective study. Int J Oral Maxillofac Implants 15:527–532PubMedGoogle Scholar
  4. 4.
    Haas R, Mensdorff-Pouilly N, Mailath G, Watzek G (1996) Survival of 1,920 IMZ implants followed for up to 100 months. Int J Oral Maxillofac Implants 11:581–588PubMedGoogle Scholar
  5. 5.
    Javed F, Almas K, Crespi R, Romanos GE (2011) Implant surface morphology and primary stability: is there a connection? Implant Dent 20:40–46PubMedCrossRefGoogle Scholar
  6. 6.
    Javed F, Romanos GE (2010) The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 38:612–620PubMedCrossRefGoogle Scholar
  7. 7.
    Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL (2003) Dental implant design and its relationship to long-term implant success. Implant Dent 12:306–317PubMedCrossRefGoogle Scholar
  8. 8.
    Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J et al (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16:1–132PubMedGoogle Scholar
  9. 9.
    Drago CJ (1992) Rates of osseointegration of dental implants with regard to anatomical location. J Prosthodont 1:29–31PubMedCrossRefGoogle Scholar
  10. 10.
    Roos J, Sennerby L, Lekholm U, Jemt T, Grondahl K et al (1997) A qualitative and quantitative method for evaluating implant success: a 5-year retrospective analysis of the Branemark implant. Int J Oral Maxillofac Implants 12:504–514PubMedGoogle Scholar
  11. 11.
    Jaffin RA, Berman CL (1991) The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 62:2–4PubMedCrossRefGoogle Scholar
  12. 12.
    Tatum H Jr (1986) Maxillary and sinus implant reconstructions. Dent Clin North Am 30:207–229PubMedGoogle Scholar
  13. 13.
    Degidi M, Piattelli A, Iezzi G, Carinci F (2007) Wide-diameter implants: analysis of clinical outcome of 304 fixtures. J Periodontol 78:52–58PubMedCrossRefGoogle Scholar
  14. 14.
    Mangano FG, Shibli JA, Sammons RL, Iaculli F, Piattelli A, et al. (2013) Short (8-mm) locking-taper implants supporting single crowns in posterior region: a prospective clinical study with 1-to 10-years of follow-up. Clin Oral Implants ResGoogle Scholar
  15. 15.
    Romanos GE, Gaertner K, Aydin E, Nentwig GH (2013) Long-term results after immediate loading of platform-switched implants in smokers versus nonsmokers with full-arch restorations. Int J Oral Maxillofac Implants 28:841–845PubMedCrossRefGoogle Scholar
  16. 16.
    Rodriguez X, Mendez V, Vela X, Segala M (2012) Modified surgical protocol for placing implants in the pterygomaxillary region: clinical and radiologic study of 454 implants. Int J Oral Maxillofac Implants 27:1547–1553PubMedGoogle Scholar
  17. 17.
    Oliveira R, El Hage M, Carrel JP, Lombardi T, Bernard JP (2012) Rehabilitation of the edentulous posterior maxilla after sinus floor elevation using deproteinized bovine bone: a 9-year clinical study. Implant Dent 21:422–426PubMedCrossRefGoogle Scholar
  18. 18.
    Ormianer Z, Piek D, Livne S, Lavi D, Zafrir G et al (2012) Retrospective clinical evaluation of tapered implants: 10-year follow-up of delayed and immediate placement of maxillary implants. Implant Dent 21:350–356PubMedCrossRefGoogle Scholar
  19. 19.
    Malo P, de Araujo NM, Lopes A, Francischone C, Rigolizzo M (2012) “All-on-4” immediate-function concept for completely edentulous maxillae: a clinical report on the medium (3 years) and long-term (5 years) outcomes. Clin Implant Dent Relat Res 14(Suppl 1):e139–150PubMedCrossRefGoogle Scholar
  20. 20.
    Buddula A, Assad DA, Salinas TJ, Garces YI, Volz JE et al (2012) Survival of dental implants in irradiated head and neck cancer patients: a retrospective analysis. Clin Implant Dent Relat Res 14:716–722PubMedCrossRefGoogle Scholar
  21. 21.
    Nedir R, Nurdin N, Vazquez L, Szmukler-Moncler S, Bischof M et al (2010) Osteotome sinus floor elevation technique without grafting: a 5-year prospective study. J Clin Periodontol 37:1023–1028PubMedCrossRefGoogle Scholar
  22. 22.
    Manso MC, Wassal T (2010) A 10-year longitudinal study of 160 implants simultaneously installed in severely atrophic posterior maxillas grafted with autogenous bone and a synthetic bioactive resorbable graft. Implant Dent 19:351–360PubMedCrossRefGoogle Scholar
  23. 23.
    Lambert F, Lecloux G, Rompen E (2010) One-step approach for implant placement and subantral bone regeneration using bovine hydroxyapatite: a 2- to 6-year follow-up study. Int J Oral Maxillofac Implants 25:598–606PubMedGoogle Scholar
  24. 24.
    Ridell A, Grondahl K, Sennerby L (2009) Placement of Branemark implants in the maxillary tuber region: anatomical considerations, surgical technique and long-term results. Clin Oral Implants Res 20:94–98PubMedCrossRefGoogle Scholar
  25. 25.
    Valeron JF, Valeron PF (2007) Long-term results in placement of screw-type implants in the pterygomaxillary-pyramidal region. Int J Oral Maxillofac Implants 22:195–200PubMedGoogle Scholar
  26. 26.
    Peleg M, Garg AK, Mazor Z (2006) Predictability of simultaneous implant placement in the severely atrophic posterior maxilla: a 9-year longitudinal experience study of 2132 implants placed into 731 human sinus grafts. Int J Oral Maxillofac Implants 21:94–102PubMedGoogle Scholar
  27. 27.
    Degidi M, Piattelli A (2005) 7-year follow-up of 93 immediately loaded titanium dental implants. J Oral Implantol 31:25–31PubMedCrossRefGoogle Scholar
  28. 28.
    Krennmair G, Waldenberger O (2004) Clinical analysis of wide-diameter frialit-2 implants. Int J Oral Maxillofac Implants 19:710–715PubMedGoogle Scholar
  29. 29.
    Simion M, Fontana F, Rasperini G, Maiorana C (2004) Long-term evaluation of osseointegrated implants placed in sites augmented with sinus floor elevation associated with vertical ridge augmentation: a retrospective study of 38 consecutive implants with 1- to 7-year follow-up. Int J Periodontics Restorative Dent 24:208–221PubMedGoogle Scholar
  30. 30.
    Attard N, Zarb GA (2002) Implant prosthodontic management of posterior partial edentulism: long-term follow-up of a prospective study. J Can Dent Assoc 68:118–124PubMedGoogle Scholar
  31. 31.
    Attard NJ, Zarb GA (2003) Implant prosthodontic management of partially edentulous patients missing posterior teeth: the Toronto experience. J Prosthet Dent 89:352–359PubMedCrossRefGoogle Scholar
  32. 32.
    Hurzeler MB, Kirsch A, Ackermann KL, Quinones CR (1996) Reconstruction of the severely resorbed maxilla with dental implants in the augmented maxillary sinus: a 5-year clinical investigation. Int J Oral Maxillofac Implants 11:466–475PubMedGoogle Scholar
  33. 33.
    Romanos GE, Nentwig GH (2009) Immediate functional loading in the maxilla using implants with platform switching: five-year results. Int J Oral Maxillofac Implants 24:1106–1112PubMedGoogle Scholar
  34. 34.
    Quek CE, Tan KB, Nicholls JI (2006) Load fatigue performance of a single-tooth implant abutment system: effect of diameter. Int J Oral Maxillofac Implants 21:929–936PubMedGoogle Scholar
  35. 35.
    Romeo E, Lops D, Amorfini L, Chiapasco M, Ghisolfi M et al (2006) Clinical and radiographic evaluation of small-diameter (3.3-mm) implants followed for 1–7 years: a longitudinal study. Clin Oral Implants Res 17:139–148PubMedCrossRefGoogle Scholar
  36. 36.
    Degidi M, Nardi D, Piattelli A (2009) Immediate versus one-stage restoration of small-diameter implants for a single missing maxillary lateral incisor: a 3-year randomized clinical trial. J Periodontol 80:1393–1398PubMedCrossRefGoogle Scholar
  37. 37.
    Saadoun AP, Le Gall MG (1996) An 8-year compilation of clinical results obtained with Steri-Oss endosseous implants. Compend Contin Educ Dent 17:669–674, 676 passim; quiz 688PubMedGoogle Scholar
  38. 38.
    Romanos GE (2004) Present status of immediate loading of oral implants. J Oral Implantol 30:189–197PubMedCrossRefGoogle Scholar
  39. 39.
    Calvo-Guirado JL, Satorres M, Negri B, Ramirez-Fernandez P, Mate-Sanchez JE, et al. (2013) Biomechanical and histological evaluation of four different titanium implant surface modifications: an experimental study in the rabbit tibia. Clin Oral InvestigGoogle Scholar
  40. 40.
    Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH et al (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902PubMedCrossRefGoogle Scholar
  41. 41.
    Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hjorting-Hansen E (1995) Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res 29:1223–1231PubMedCrossRefGoogle Scholar
  42. 42.
    Tabassum A, Meijer GJ, Wolke JG, Jansen JA (2010) Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res 21:213–220PubMedCrossRefGoogle Scholar
  43. 43.
    Tabassum A, Meijer GJ, Wolke JG, Jansen JA (2009) Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: a laboratory study. Clin Oral Implants Res 20:327–332PubMedCrossRefGoogle Scholar
  44. 44.
    Tabassum A, Walboomers F, Wolke JG, Meijer GJ, Jansen JA (2011) The influence of surface roughness on the displacement of osteogenic bone particles during placement of titanium screw-type implants. Clin Implant Dent Relat Res 13:269–278PubMedCrossRefGoogle Scholar
  45. 45.
    Soskolne WA, Cohen S, Sennerby L, Wennerberg A, Shapira L (2002) The effect of titanium surface roughness on the adhesion of monocytes and their secretion of TNF-alpha and PGE2. Clin Oral Implants Res 13:86–93PubMedCrossRefGoogle Scholar
  46. 46.
    Butz F, Aita H, Wang CJ, Ogawa T (2006) Harder and stiffer bone osseointegrated to roughened titanium. J Dent Res 85:560–565PubMedCrossRefGoogle Scholar
  47. 47.
    Javed F, Nasstrom K, Benchimol D, Altamash M, Klinge B et al (2007) Comparison of periodontal and socioeconomic status between subjects with type 2 diabetes mellitus and non-diabetic controls. J Periodontol 78:2112–2119PubMedCrossRefGoogle Scholar
  48. 48.
    Javed F, Almas K (2010) Osseointegration of dental implants in patients undergoing bisphosphonate treatment: a literature review. J Periodontol 81:479–484PubMedCrossRefGoogle Scholar
  49. 49.
    Javed F, Al-Hezaimi K, Al-Rasheed A, Almas K, Romanos GE (2010) Implant survival rate after oral cancer therapy: a review. Oral Oncol 46:854–859PubMedCrossRefGoogle Scholar
  50. 50.
    Vervaeke S, Collaert B, Cosyn J, Deschepper E, De Bruyn H (2013) A multifactorial analysis to identify predictors of implant failure and peri-implant bone loss. Clin Implant Dent Relat ResGoogle Scholar
  51. 51.
    Romanos GE, Johansson CB (2005) Immediate loading with complete implant-supported restorations in an edentulous heavy smoker: histologic and histomorphometric analyses. Int J Oral Maxillofac Implants 20:282–290PubMedGoogle Scholar
  52. 52.
    Javed F, Romanos GE (2009) Impact of diabetes mellitus and glycemic control on the osseointegration of dental implants: a systematic literature review. J Periodontol 80:1719–1730PubMedCrossRefGoogle Scholar
  53. 53.
    Javed F, Al-Rasheed A, Almas K, Romanos GE, Al-Hezaimi K (2012) Effect of cigarette smoking on the clinical outcomes of periodontal surgical procedures. Am J Med Sci 343:78–84PubMedCrossRefGoogle Scholar
  54. 54.
    Saffi MA, Furtado MV, Montenegro MM, Ribeiro IW, Kampits C et al (2013) The effect of periodontal therapy on C-reactive protein, endothelial function, lipids and proinflammatory biomarkers in patients with stable coronary artery disease: study protocol for a randomized controlled trial. Trials 14:283PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Lee SB, Retzepi M, Petrie A, Hakimi AR, Schwarz F et al (2013) The effect of diabetes on bone formation following application of the GBR principle with the use of titanium domes. Clin Oral Implants Res 24:28–35PubMedCrossRefGoogle Scholar
  56. 56.
    Schlegel KA, Prechtl C, Most T, Seidl C, Lutz R et al (2013) Osseointegration of SLActive implants in diabetic pigs. Clin Oral Implants Res 24:128–134PubMedCrossRefGoogle Scholar
  57. 57.
    Asai S, Shimizu Y, Ooya K (2002) Maxillary sinus augmentation model in rabbits: effect of occluded nasal ostium on new bone formation. Clin Oral Implants Res 13:405–409PubMedCrossRefGoogle Scholar
  58. 58.
    Xu H, Shimizu Y, Asai S, Ooya K (2003) Experimental sinus grafting with the use of deproteinized bone particles of different sizes. Clin Oral Implants Res 14:548–555PubMedCrossRefGoogle Scholar
  59. 59.
    Xu H, Shimizu Y, Onodera K, Ooya K (2005) Long-term outcome of augmentation of the maxillary sinus using deproteinized bone particles experimental study in rabbits. Br J Oral Maxillofac Surg 43:40–45PubMedCrossRefGoogle Scholar
  60. 60.
    Javed F, Al-Askar M, Al-Rasheed A, Al-Hezaimi K (2011) Significance of the platelet-derived growth factor in periodontal tissue regeneration. Arch Oral Biol 56:1476–1484PubMedCrossRefGoogle Scholar
  61. 61.
    Sohrabi K, Mushantat A, Esfandiari S, Feine J (2012) How successful are small-diameter implants? A literature review. Clin Oral Implants Res 23:515–525PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Eng. A.B.. Research Chair for Growth Factors and Bone Regneration, 3D Imaging and Biomechanical Laboratory, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Periodontology, School of Dental MedicineStony Brook UniversityStony BrookUSA

Personalised recommendations