Advertisement

Clinical Oral Investigations

, Volume 19, Issue 1, pp 139–148 | Cite as

In vitro effects of bisphosphonates on chemotaxis, phagocytosis, and oxidative burst of neutrophil granulocytes

  • Nadine Hagelauer
  • Andreas Max Pabst
  • Thomas Ziebart
  • Holger Ulbrich
  • Christian Walter
Original Article

Abstract

Objectives

Bisphosphonate-associated osteonecrosis of the jaws is a serious side effect that mainly occurs in patients receiving highly potent, nitrogen-containing bisphosphonates. Usually the diagnosis is made due to exposed bone and a nonhealing wound. Neutrophil granulocytes are essential for sufficient wound healing; therefore, the influence of different bisphosphonates on neutrophil granulocytes was the focus of this study.

Material and methods

The effect of nitrogen-containing bisphosphonates (ibandronate, pamidronate, and zoledronate) and one non-nitrogen-containing bisphosphonate (clodronate) on chemotaxis, phagocytosis, and oxidative burst of neutrophil granulocytes in human whole blood was analyzed using standard cytometric flow assays.

Results

Chemotaxis of neutrophils was reduced by almost 50 % when cells were treated with ibandronate and zoledronate. All tested nitrogen-containing bisphosphonates moderately increased the percentage of phagocytizing neutrophils, whereas the percentage of oxidizing cells was extremely affected. Zoledronate increased the oxidative burst activity even at low concentrations. Treatment with ibandronate and pamidronate reached the same level, but only in at least 10 times the higher concentrations. The maximal burst activity of a single cell reached nearly 150 % compared to control. In this case, zoledronate also caused maximal effects even at low concentrations. Clodronate did not show any effects.

Conclusion

The results show a proinflammatory effect of the nitrogen-containing effect on neutrophil granulocytes which might contribute to the development of osteonecrosis.

Clinical relevance

The altered neutrophil defense might play a key role in the pathogenesis of bisphosphonate-associated osteonecrosis of the jaws, although the underlying causation between inflammatory reaction and the development of necrosis is yet unknown.

Keywords

Bisphosphonate Bisphosphonate-associated osteonecrosis of the jaws Neutrophil granulocyte Immune defense 

Notes

Conflict of interest

None.

References

  1. 1.
    Mashiba T, Mori S, Burr DB, Komatsubara S, Cao Y, Manabe T, Norimatsu H (2005) The effects of suppressed bone remodeling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib. J Bone Miner Metab 23(Suppl):36–42PubMedCrossRefGoogle Scholar
  2. 2.
    Walter C, Klein MO, Pabst A, Al-Nawas B, Duschner H, Ziebart T (2010) Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14(1):35–41. doi: 10.1007/s00784-009-0266-4 PubMedCrossRefGoogle Scholar
  3. 3.
    Ziebart T, Pabst A, Klein MO, Kammerer P, Gauss L, Brullmann D, Al-Nawas B, Walter C (2009) Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin Oral Investig 15(1):105–111. doi: 10.1007/s00784-009-0365-2 PubMedCrossRefGoogle Scholar
  4. 4.
    Pabst AM, Ziebart T, Ackermann M, Konerding MA, Walter C (2013) Bisphosphonates’ antiangiogenic potency in the development of bisphosphonate-associated osteonecrosis of the jaws: influence on microvessel sprouting in an in vivo 3D Matrigel assay. Clin Oral Investig. doi: 10.1007/s00784-013-1060-x Google Scholar
  5. 5.
    Walter C, Pabst A, Ziebart T, Klein M, Al-Nawas B (2011) Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral Dis 17(2):194–199. doi: 10.1111/j.1601-0825.2010.01720.x PubMedCrossRefGoogle Scholar
  6. 6.
    Pabst AM, Ziebart T, Koch FP, Taylor KY, Al-Nawas B, Walter C (2011) The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes—in vitro study. Clin Oral Investig 16(1):87–93. doi: 10.1007/s00784-010-0507-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Walter C, Klein MO, Pabst A, Al-Nawas B, Duschner H, Ziebart T (2009) Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14(1):35–41. doi: 10.1007/s00784-009-0266-4 PubMedCrossRefGoogle Scholar
  8. 8.
    Lehrer S, Montazem A, Ramanathan L, Pessin-Minsley M, Pfail J, Stock RG, Kogan R (2009) Bisphosphonate-induced osteonecrosis of the jaws, bone markers, and a hypothesized candidate gene. J Oral Maxillofac Surg 67(1):159–161. doi: 10.1016/j.joms.2008.09.015 PubMedCrossRefGoogle Scholar
  9. 9.
    Sarasquete ME, Garcia-Sanz R, Marin L, Alcoceba M, Chillon MC, Balanzategui A, Santamaria C, Rosinol L, de la Rubia J, Hernandez MT, Garcia-Navarro I, Lahuerta JJ, Gonzalez M, San Miguel JF (2008) Bisphosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis. Blood 112(7):2709–2712. doi: 10.1182/blood-2008-04-147884 PubMedCrossRefGoogle Scholar
  10. 10.
    Tarassoff P, Csermak K (2003) Avascular necrosis of the jaws: risk factors in metastatic cancer patients. J Oral Maxillofac Surg 61(10):1238–1239PubMedCrossRefGoogle Scholar
  11. 11.
    Walter C, Grotz KA, Kunkel M, Al-Nawas B (2007) Prevalence of bisphosphonate associated osteonecrosis of the jaw within the field of osteonecrosis. Support Care Cancer 15(2):197–202. doi: 10.1007/s00520-006-0120-z PubMedCrossRefGoogle Scholar
  12. 12.
    Walter C, Al-Nawas B, Grotz KA, Thomas C, Thuroff JW, Zinser V, Gamm H, Beck J, Wagner W (2008) Prevalence and risk factors of bisphosphonate-associated osteonecrosis of the jaw in prostate cancer patients with advanced disease treated with zoledronate. Eur Urol 54(5):1066–1072. doi: 10.1016/j.eururo.2008.06.070 PubMedCrossRefGoogle Scholar
  13. 13.
    Walter C, Laux C, Sagheb K (2013) Radiologic bone loss in patients with bisphosphonate-associated osteonecrosis of the jaws: a case-control study. Clin Oral Investig. doi: 10.1007/s00784-013-0974-7 Google Scholar
  14. 14.
    Hansen T, Kunkel M, Springer E, Walter C, Weber A, Siegel E, Kirkpatrick CJ (2007) Actinomycosis of the jaws—histopathological study of 45 patients shows significant involvement in bisphosphonate-associated osteonecrosis and infected osteoradionecrosis. Virchows Arch 451(6):1009–1017. doi: 10.1007/s00428-007-0516-2 PubMedCrossRefGoogle Scholar
  15. 15.
    Lesclous P, Abi Najm S, Carrel JP, Baroukh B, Lombardi T, Willi JP, Rizzoli R, Saffar JL, Samson J (2009) Bisphosphonate-associated osteonecrosis of the jaw: a key role of inflammation? Bone 45(5):843–852. doi: 10.1016/j.bone.2009.07.011 PubMedCrossRefGoogle Scholar
  16. 16.
    Broughton G 2nd, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg 117(7 Suppl):1e-S–32e-S. doi: 10.1097/01.prs.0000222562.60260 CrossRefGoogle Scholar
  17. 17.
    Lamster IB (2000) Grbic JT (1995) Diagnosis of periodontal disease based on analysis of the host response. Periodontol 7:83–99CrossRefGoogle Scholar
  18. 18.
    Bosshardt DD, Lang NP (2005) The junctional epithelium: from health to disease. J Dent Res 84(1):9–20PubMedCrossRefGoogle Scholar
  19. 19.
    Lorenzo J, Horowitz M, Choi Y (2008) Osteoimmunology: interactions of the bone and immune system. Endocr Rev 29(4):403–440. doi: 10.1210/er.2007-0038 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Otto S, Pautke C, Opelz C, Westphal I, Drosse I, Schwager J, Bauss F, Ehrenfeld M, Schieker M (2010) Osteonecrosis of the jaw: effect of bisphosphonate type, local concentration, and acidic milieu on the pathomechanism. J Oral Maxillofac Surg 68(11):2837–2845. doi: 10.1016/j.joms.2010.07.017 PubMedCrossRefGoogle Scholar
  21. 21.
    Montazeri AH, Erskine JG, McQuaker IG (2007) Oral sodium clodronate induced osteonecrosis of the jaw in a patient with myeloma. Eur J Haematol 79(1):69–71. doi: 10.1111/j.1600-0609.2007.00872.x PubMedCrossRefGoogle Scholar
  22. 22.
    Virtanen SS, Vaananen HK, Harkonen PL, Lakkakorpi PT (2002) Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 62(9):2708–2714PubMedGoogle Scholar
  23. 23.
    Walker K, Olson MF (2005) Targeting Ras and Rho GTPases as opportunities for cancer therapeutics. Curr Opin Genet Dev 15(1):62–68. doi: 10.1016/j.gde.2004.11.001 PubMedCrossRefGoogle Scholar
  24. 24.
    Oades GM, Senaratne SG, Clarke IA, Kirby RS, Colston KW (2003) Nitrogen containing bisphosphonates induce apoptosis and inhibit the mevalonate pathway, impairing Ras membrane localization in prostate cancer cells. J Urol 170(1):246–252. doi: 10.1097/01.ju.0000070685.34760.5f PubMedCrossRefGoogle Scholar
  25. 25.
    Wu L, Zhu L, Shi WH, Zhang J, Ma D, Yu B (2009) Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol 602(1):124–131. doi: 10.1016/j.ejphar.2008.10.043 PubMedCrossRefGoogle Scholar
  26. 26.
    Rogers MJ, Chilton KM, Coxon FP, Lawry J, Smith MO, Suri S, Russell RG (1996) Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res 11(10):1482–1491. doi: 10.1002/jbmr.5650111015 PubMedCrossRefGoogle Scholar
  27. 27.
    Kuiper JW, Forster C, Sun C, Peel S, Glogauer M (2012) Zoledronate and pamidronate depress neutrophil functions and survival in mice. Br J Pharmacol 165(2):532–539. doi: 10.1111/j.1476-5381.2011.01592.x PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Coughlan AM, Freeley SJ, Robson MG (2012) Humanised mice have functional human neutrophils. J Immunol Methods 385(1-2):96–104. doi: 10.1016/j.jim.2012.08.005 PubMedCrossRefGoogle Scholar
  29. 29.
    Condliffe AM, Davidson K, Anderson KE, Ellson CD, Crabbe T, Okkenhaug K, Vanhaesebroeck B, Turner M, Webb L, Wymann MP, Hirsch E, Ruckle T, Camps M, Rommel C, Jackson SP, Chilvers ER, Stephens LR, Hawkins PT (2005) Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106(4):1432–1440. doi: 10.1182/blood-2005-03-0944 PubMedCrossRefGoogle Scholar
  30. 30.
    Favot CL, Forster C, Glogauer M (2013) The effect of bisphosphonate therapy on neutrophil function: a potential biomarker. International journal of oral and maxillofacial surgery 42(5):619–626. doi: 10.1016/j.ijom.2012.12.011 PubMedCrossRefGoogle Scholar
  31. 31.
    Yao S, Huang D, Chen CY, Halliday L, Zeng G, Wang RC, Chen ZW (2010) Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis. PLoS Pathog 6(2):e1000789. doi: 10.1371/journal.ppat.1000789 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2):384–392PubMedGoogle Scholar
  33. 33.
    Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197(2):163–168PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Thompson K, Rojas-Navea J, Rogers MJ (2006) Alkylamines cause Vgamma9Vdelta2 T-cell activation and proliferation by inhibiting the mevalonate pathway. Blood 107(2):651–654. doi: 10.1182/blood-2005-03-1025 PubMedCrossRefGoogle Scholar
  35. 35.
    Thompson K, Rogers MJ (2004) Statins prevent bisphosphonate-induced gamma, delta-T-cell proliferation and activation in vitro. J Bone Miner Res 19(2):278–288. doi: 10.1359/JBMR.0301230 PubMedCrossRefGoogle Scholar
  36. 36.
    Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK (2005) The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139(1):101–111. doi: 10.1111/j.1365-2249.2005.02665.x PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Roelofs AJ, Jauhiainen M, Monkkonen H, Rogers MJ, Monkkonen J, Thompson K (2009) Peripheral blood monocytes are responsible for gammadelta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. Br J Haematol 144(2):245–250. doi: 10.1111/j.1365-2141.2008.07435.x PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kabelitz D (2008) Small molecules for the activation of human gammadelta T cell responses against infection. Recent Pat Antiinfect Drug Discov 3(1):1–9PubMedCrossRefGoogle Scholar
  39. 39.
    Garcia VE, Sieling PA, Gong J, Barnes PF, Uyemura K, Tanaka Y, Bloom BR, Morita CT, Modlin RL (1997) Single-cell cytokine analysis of gamma delta T cell responses to nonpeptide mycobacterial antigens. J Immunol 159(3):1328–1335PubMedGoogle Scholar
  40. 40.
    Cipriani B, Borsellino G, Poccia F, Placido R, Tramonti D, Bach S, Battistini L, Brosnan CF (2000) Activation of C-C beta-chemokines in human peripheral blood gammadelta T cells by isopentenyl pyrophosphate and regulation by cytokines. Blood 95(1):39–47PubMedGoogle Scholar
  41. 41.
    Poccia F, Agrati C, Martini F, Mejia G, Wallace M, Malkovsky M (2005) Vgamma9Vdelta2 T cell-mediated non-cytolytic antiviral mechanisms and their potential for cell-based therapy. Immunol Lett 100(1):14–20. doi: 10.1016/j.imlet.2005.06.025 PubMedCrossRefGoogle Scholar
  42. 42.
    Thiebaud D, Sauty A, Burckhardt P, Leuenberger P, Sitzler L, Green JR, Kandra A, Zieschang J, Ibarra de Palacios P (1997) An in vitro and in vivo study of cytokines in the acute-phase response associated with bisphosphonates. Calcif Tissue Int 61(5):386–392PubMedCrossRefGoogle Scholar
  43. 43.
    Dicuonzo G, Vincenzi B, Santini D, Avvisati G, Rocci L, Battistoni F, Gavasci M, Borzomati D, Coppola R, Tonini G (2003) Fever after zoledronic acid administration is due to increase in TNF-alpha and IL-6. J Interferon Cytokine Res 23(11):649–654. doi: 10.1089/107999003322558782 PubMedCrossRefGoogle Scholar
  44. 44.
    Jan MS, Huang YH, Shieh B, Teng RH, Yan YP, Lee YT, Liao KK, Li C (2006) CC chemokines induce neutrophils to chemotaxis, degranulation, and alpha-defensin release. J Acquir Immune Defic Syndr 41(1):6–16PubMedCrossRefGoogle Scholar
  45. 45.
    Agrati C, Cimini E, Sacchi A, Bordoni V, Gioia C, Casetti R, Turchi F, Tripodi M, Martini F (2009) Activated V gamma 9V delta 2 T cells trigger granulocyte functions via MCP-2 release. J Immunol 182(1):522–529PubMedCrossRefGoogle Scholar
  46. 46.
    Rossini M, Adami S, Viapiana O, Fracassi E, Ortolani R, Vella A, Zanotti R, Tripi G, Idolazzi L, Gatti D (2012) Long-term effects of amino-bisphosphonates on circulating gammadelta T cells. Calcif Tissue Int 91(6):395–399. doi: 10.1007/s00223-012-9647-9 PubMedCrossRefGoogle Scholar
  47. 47.
    Thurnher M, Nussbaumer O, Gruenbacher G (2012) Novel aspects of mevalonate pathway inhibitors as antitumor agents. Clin Cancer Res 18(13):3524–3531. doi: 10.1158/1078-0432.CCR-12-0489 PubMedCrossRefGoogle Scholar
  48. 48.
    Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9(32):2643–2658PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nadine Hagelauer
    • 1
  • Andreas Max Pabst
    • 1
  • Thomas Ziebart
    • 1
  • Holger Ulbrich
    • 2
  • Christian Walter
    • 1
  1. 1.Oral- and Maxillofacial Surgery, University Medical CenterJohannes Gutenberg-UniversityMainzGermany
  2. 2.Institute of Pharmacy and BiochemistryJohannes Gutenberg-UniversityMainzGermany

Personalised recommendations