Clinical Oral Investigations

, Volume 18, Issue 8, pp 1991–2000 | Cite as

Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites

Original Article

Abstract

Objectives

The aim of this study was to quantify the blue light that passes through different incremental thicknesses of bulk fill in comparison to conventional resin-based composites (RBCs) and to relate it to the induced mechanical properties.

Materials and methods

Seven bulk fill, five nanohybrid and two flowable RBCs were analysed. Specimens (n = 5) of three incremental thicknesses (2, 4 and 6 mm) were cured from the top for 20 s, while at the bottom, a spectrometer monitored in real time the transmitted irradiance. Micro-mechanical properties (Vickers hardness, HV, and indentation modulus, E) were measured at the top and bottom after 24 h of storage in distilled water at 37 °C. Electron microscope images were taken for assessing the filler distribution and size.

Results

Bulk fill RBCs (except SonicFill) were more translucent than conventional RBCs. Low-viscosity bulk fill materials showed the lowest mechanical properties. HV depends highly on the following parameters: material (ηp2 = 0.952), incremental thickness (0.826), filler volume (0.747), filler weight (0.746) and transmitted irradiance (0.491). The bottom-to-top HV ratio (HVbt) was higher than 80 % in all materials in 2- and 4-mm increments (except for Premise), whereas in 6-mm increments, this is valid only in four bulk fill materials (Venus Bulk Fill, SDR, x-tra fil, Tetric EvoCeram Bulk Fill).

Conclusions

The depth of cure is dependent on the RBC’s translucency. Low-viscosity bulk fill RBCs have lower mechanical properties than all other types of analysed materials. All bulk fill RBCs (except SonicFill) are more translucent for blue light than conventional RBCs.

Significance

Although bulk fill RBCs are generally more translucent, the practitioner has to follow the manufacturer’s recommendations on curing technique and maximum incremental thickness.

Keywords

Bulk fill resin-based composites Micro-hardness Translucency Micro-mechanical properties Irradiance 

References

  1. 1.
    Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27(1):29–38. doi:10.1016/j.dental.2010.10.020 PubMedCrossRefGoogle Scholar
  2. 2.
    Park J, Chang J, Ferracane J, Lee IB (2008) How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater 24(11):1501–1505. doi:10.1016/j.dental.2008.03.013 PubMedCrossRefGoogle Scholar
  3. 3.
    Rueggeberg F (1999) Contemporary issues in photocuring. Compend Contin Educ Dent Suppl (Jamesburg, NJ: 1995) (25):S4–15; quiz S73.Google Scholar
  4. 4.
    Radhika M, Sajjan GS, Kumara Swami BN, Mittal N (2010) Effect of different placement techniques on marginal microleakage of deep class-II cavities restored with two composite resin formulations. J Conserv Dent 13(1):9–15. doi:10.4103/0972-0707.62633 CrossRefGoogle Scholar
  5. 5.
    Kwon Y, Ferracane J, Lee IB (2012) Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent Mater 28(7):801–809. doi:10.1016/j.dental.2012.04.028 PubMedCrossRefGoogle Scholar
  6. 6.
    Oliveira LC, Duarte S Jr, Araujo CA, Abrahao A (2010) Effect of low-elastic modulus liner and base as stress-absorbing layer in composite resin restorations. Dent Mater 26(3):e159–e169. doi:10.1016/j.dental.2009.11.076 PubMedCrossRefGoogle Scholar
  7. 7.
    Heraeus Kulzer (2013) Venus Bulk Fill DFU.http://venusbulkfill.com/media/webmedia_local/media/pdfs/VenusBulkFillDFU_English.pdf. Accessed 1 Oct 2012
  8. 8.
    Ivoclar Vivadent Pty. Ltd. (2013) Tetric EvoCeram Bulk Fill DFU. http://www.ivoclarvivadent.com/zoolu-website/media/document/11227/Tetric + EvoCeram + Bulk + Fill. Accessed 1 Oct 2012
  9. 9.
    VOVO GmbH (2013) x-tra fil DFU. http://www.voco.com/en/products/_products/x_tra_fil/x-tra_fil_22spr_049.pdf. Accessed 1 Oct 2012
  10. 10.
    VOVO GmbH (2013) x-tra base DFU. http://www.voco.com/en/products/_products/x-tra_base/GI_x-tra_base_22spr_0811.pdf. Accessed 1 Oct 2012
  11. 11.
    DENTSPLY Caulk (2013) SureFil SDR DFU. http://www.caulk.com/assets/pdfs/products/51C006_SureFilSDR_(1–24–12).pdf. Accessed 1 Oct 2012
  12. 12.
  13. 13.
  14. 14.
    Ferracane JL (1995) Current trends in dental composites. Crit Rev Oral Biol Med 6(4):302–318PubMedCrossRefGoogle Scholar
  15. 15.
    Czasch P, Ilie N (2012) In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 17(1):227–235. doi:10.1007/s00784-012-0702-8 PubMedCrossRefGoogle Scholar
  16. 16.
    Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13(4):427–438. doi:10.1007/s00784-009-0258-4 PubMedCrossRefGoogle Scholar
  17. 17.
    Kwon TY, Bagheri R, Kim YK, Kim KH, Burrow MF (2012) Cure mechanisms in materials for use in esthetic dentistry. J Investig Clin Dent 3(1):3–16. doi:10.1111/j.2041-1626.2012.00114.x PubMedCrossRefGoogle Scholar
  18. 18.
    Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V (2008) Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater 24(7):901–907. doi:10.1016/j.dental.2007.11.004 PubMedCrossRefGoogle Scholar
  19. 19.
    Caldas DB, de Almeida JB, Correr-Sobrinho L, Sinhoreti MA, Consani S (2003) Influence of curing tip distance on resin composite Knoop hardness number, using three different light curing units. Oper Dent 28(3):315–320PubMedGoogle Scholar
  20. 20.
    Yearn JA (1985) Factors affecting cure of visible light activated composites. Int Dent J 35(3):218–225PubMedGoogle Scholar
  21. 21.
    Thome T, Steagall W Jr, Tachibana A, Braga SR, Turbino ML (2007) Influence of the distance of the curing light source and composite shade on hardness of two composites. J Appl Oral Sci: revista FOB 15(6):486–491. doi:10.1590/S1678-77572007000600006 PubMedCrossRefGoogle Scholar
  22. 22.
    Calheiros FC, Daronch M, Rueggeberg FA, Braga RR (2008) Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system. Dent Mater 24(9):1164–1168. doi:10.1016/j.dental.2008.01.006 PubMedCrossRefGoogle Scholar
  23. 23.
    Ferracane JL, Mitchem JC, Condon JR, Todd R (1997) Wear and marginal breakdown of composites with various degrees of cure. J Dent Res 76(8):1508–1516. doi:10.1177/00220345970760081401 PubMedCrossRefGoogle Scholar
  24. 24.
    Ilie N, Hickel R (2007) Quality of curing in relation to hardness, degree of cure and polymerization depth measured on a nano-hybrid composite. Am J Dent 20(4):263–268PubMedGoogle Scholar
  25. 25.
    Durner J, Obermaier J, Draenert M, Ilie N (2012) Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater 28(11):1146–1153. doi:10.1016/j.dental.2012.08.006 PubMedCrossRefGoogle Scholar
  26. 26.
    Aranha AM, Giro EM, Hebling J, Lessa FC, Costa CA (2010) Effects of light-curing time on the cytotoxicity of a restorative composite resin on odontoblast-like cells. J Appl Oral Sci: revista FOB 18(5):461–466. doi:10.1590/S1678-77572010000500006 PubMedCrossRefGoogle Scholar
  27. 27.
    Akram S, Ali Abidi SY, Ahmed S, Meo AA, Qazi FU (2011) Effect of different irradiation times on microhardness and depth of cure of a nanocomposite resin. J Coll Physicians Surg Pak 21(7):411–414. doi:http://www.ncbi.nlm.nih.gov/pubmed/21777529 PubMedGoogle Scholar
  28. 28.
    Bouschlicher MR, Rueggeberg FA, Wilson BM (2004) Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent 29(6):698–704PubMedGoogle Scholar
  29. 29.
    ISO (2013) Dentistry—polymer-based restorative materials. ISO 4049:2009Google Scholar
  30. 30.
    Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A (2012) Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 28(5):521–528. doi:10.1016/j.dental.2012.02.002 PubMedCrossRefGoogle Scholar
  31. 31.
    ISO (2013) Metallic materials—instrumented indentation test for hardness and materials parameters—part 1: test method. ISO 14577–1:2002Google Scholar
  32. 32.
    Musanje L, Darvell BW (2006) Curing-light attenuation in filled-resin restorative materials. Dent Mater 22(9):804–817. doi:10.1016/j.dental.2005.11.009 PubMedCrossRefGoogle Scholar
  33. 33.
    Arikawa H, Kanie T, Fujii K, Takahashi H, Ban S (2007) Effect of filler properties in composite resins on light transmittance characteristics and color. Dent Mater J 26(1):38–44PubMedCrossRefGoogle Scholar
  34. 34.
    Fujita K, Ikemi T, Nishiyama N (2011) Effects of particle size of silica filler on polymerization conversion in a light-curing resin composite. Dent Mater 27(11):1079–1085. doi:10.1016/j.dental.2011.07.010 PubMedCrossRefGoogle Scholar
  35. 35.
    Emami N, Sjodahl M, Soderholm KJ (2005) How filler properties, filler fraction, sample thickness and light source affect light attenuation in particulate filled resin composites. Dent Mater 21(8):721–730. doi:10.1016/j.dental.2005.01.002 PubMedCrossRefGoogle Scholar
  36. 36.
    Feng L, Suh BI, Shortall AC (2010) Formation of gaps at the filler-resin interface induced by polymerization contraction stress: gaps at the interface. Dent Mater 26(8):719–729. doi:10.1016/j.dental.2010.03.004 PubMedCrossRefGoogle Scholar
  37. 37.
    Hadis MA, Shortall AC, Palin WM (2012) Specimen aspect ratio and light transmission in photoactive dental resins. Dent Mater 28(11):1154–1161. doi:10.1016/j.dental.2012.08.010 PubMedCrossRefGoogle Scholar
  38. 38.
    Shortall AC, Palin WM, Burtscher P (2008) Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res 87(1):84–88. doi:10.1177/154405910808700115 PubMedCrossRefGoogle Scholar
  39. 39.
    Chen YC, Ferracane JL, Prahl SA (2007) Quantum yield of conversion of the photoinitiator camphorquinone. Dent Mater 23(6):655–664. doi:10.1016/j.dental.2006.06.005 PubMedCrossRefGoogle Scholar
  40. 40.
    Guo G, Fan Y, Zhang JF, Hagan JL, Xu X (2012) Novel dental composites reinforced with zirconia-silica ceramic nanofibers. Dent Mater 28(4):360–368. doi:10.1016/j.dental.2011.11.006 PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Braem M, Finger W, Van Doren VE, Lambrechts P, Vanherle G (1989) Mechanical properties and filler fraction of dental composites. Dent Mater 5(5):346–348PubMedCrossRefGoogle Scholar
  42. 42.
    Chung KH, Greener EH (1990) Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. J Oral Rehabil 17(5):487–494. doi:10.1111/j.1365-2842.1990.tb01419.x PubMedCrossRefGoogle Scholar
  43. 43.
    Price RB, Felix CA, Andreou P (2004) Effects of resin composite composition and irradiation distance on the performance of curing lights. Biomaterials 25(18):4465–4477. doi:10.1016/j.biomaterials.2003.11.032 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Operative/Restorative Dentistry, Periodontology and PedodonticsLudwig-Maximilians-University of MunichMunichGermany

Personalised recommendations