Advertisement

Clinical Oral Investigations

, Volume 18, Issue 2, pp 625–634 | Cite as

Penetration kinetics of four mouthrinses into Streptococcus mutans biofilms analyzed by direct time-lapse visualization

  • Rika Wakamatsu
  • Shoji Takenaka
  • Tatsuya Ohsumi
  • Yutaka Terao
  • Hayato Ohshima
  • Takashi Okiji
Original Article

Abstract

Objective

The aim of this study was to determine whether different antiseptic mouthrinses show different penetration kinetics into Streptococcus mutans biofilms.

Materials and methods

The biofilms, grown on glass-based dishes, were exposed to one of four mouthrinses containing chlorhexidine digluconate, essential oil, cetylpyridinium chloride, or isopropylmethylphenol. Then, penetration velocities were determined by monitoring fluorescence loss of calcein AM-stained biofilms with time-lapse confocal laser scanning microscopy. Bactericidal activity was assessed with fluorescent bacterial viable cell (Live/Dead) staining and viable cell counts. Bacterial detachment after the mouthrinse exposure was determined by measuring fluorescence reduction of SYTO9-stained biofilms.

Results

The essential oil-containing mouthrinse showed significantly faster penetration velocity than the other mouthrinses (ANCOVA and Bonferroni test, p < 0.05). However, even 5 min of exposure left the biofilm structure almost intact. After 30 s (consumer rinsing time) of exposure, the essential oil-containing mouthrinse showed the highest log reduction of viable cells (2.7 log CFU) measured by Live/Dead staining, and the mean reduction of total viable cells was 1.41 log CFU measured by viable cell count.

Conclusions

The essential oil-containing mouthrinse showed the best penetration. Within 30 s of exposure, however, no mouthrinses injured all the microorganisms and all mouthrinses left the biofilm structure nearly intact.

Clinical relevance

The mouthrinses tested showed different levels of biofilm penetration. The essential oil rinse was superior to other rinses by all three of the in vitro measurements performed.

Keywords

Biofilm Time-lapse observation Penetration kinetics Mouthrinse 

Notes

Acknowledgments

This investigation was supported in part by a Grant-in-Aid for Scientific Research (C) (no. 23592795) from the Japan Society for the Promotion of Science (JSPS), a Grant-in-Aid for Young Scientists (B) (no. 22791830) from the JSPS, and the JSPS Institutional Program for Young Researcher Overseas Visits.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Allaker RP, Douglas CWI (2009) Novel anti-microbial therapies for dental plaque-related diseases. Int J Antimicrob Agents 33:8–13PubMedCrossRefGoogle Scholar
  2. 2.
    Marsh PD (2010) Controlling the oral biofilm with antimicrobials. J Dent 38(Suppl 1):S11–S15PubMedCrossRefGoogle Scholar
  3. 3.
    Jeon JG, Rosalen PL, Falsetta ML, Koo H (2011) Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 45:243–263PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Socransky SS, Haffajee AD (2000) Dental biofilms: difficult therapeutic targets. Periodontol 2000 28:12–55CrossRefGoogle Scholar
  5. 5.
    Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15PubMedCrossRefGoogle Scholar
  7. 7.
    Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Thurnheer T, Gmur R, Shapiro S, Guggenheim B (2003) Mass transport of macromolecules within an in vitro model supragingival plaque. Appl Environ Microbiol 69:1702–1709PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kim J, Pitts B, Stewart PS, Camper A, Yoon J (2008) Comparison of the antimicrobial effects of chloride, silver ion, and tobramycin on biofilm. Antimicrob Agents Chemother 52:1446–1453PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Baffone W, Sorgente G, Campana R, Patrone V, Sisti D, Falcioni T (2011) Comparative effect of chlorhexidine and some mouthrinses on bacterial biofilm formation in titanium surface. Curr Microbiol 62:445–451PubMedCrossRefGoogle Scholar
  11. 11.
    Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Davison WM, Pitts B, Stewart PS (2010) Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 54:2920–2927PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72:2064–2069PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gunther F, Wabnitz GH, Stroh P, Prior B, Obst U, Samstag Y, Wagner C, Hansch GM (2009) Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol 46:1805–1813PubMedCrossRefGoogle Scholar
  15. 15.
    Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Buckingham-Meyer K, Stewart PS (2007) Spatial patterns of DNA replication, protein synthesis and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467–2473PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Takenaka S, Trivedi HM, Corbin A, Pitts B, Stewart PS (2008) Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 74:1869–1875PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Corbin A, Pitts B, Parker A, Stewart PS (2011) Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 55:3338–3344PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Thurnheer T, van der Ploeg JR, Giertsen E, Guggenheim B (2006) Effects of Streptococcus mutans gtfC deficiency on mixed oral biofilms in vitro. Caries Res 40:163–171PubMedCrossRefGoogle Scholar
  21. 21.
    Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69–86PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sedlacek MJ, Walker C (2007) Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol 22:333–339PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Pan P, Barnett ML, Coelho J, Brogdon C, Finnegan MB (2000) Determination of the in situ bactericidal activity of an essential oil mouthrinse using a vital stain method. J Clin Periodontol 27:256–261PubMedCrossRefGoogle Scholar
  24. 24.
    Tadokoro K, Yamaguchi T, Kawamura K, Shimizu H, Egashira T, Minabe M, Yoshino T, Oguchi H (2010) Rapid quantification of periodontitis-related bacteria using a novel modification of Invader PLUS technologies. Microbiol Res 165:43–49PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Z, Nadezhina E, Wilkinson KJ (2011) Quantifying diffusion in a biofilm of Streptococcus mutans. Antimicrob Agents Chemother 55:1075–1081PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Marcotte L, Therien-Aubin H, Sandt C, Barbeau J, Lafleur M (2004) Solute size effects on the diffusion in biofilms of Streptococcus mutans. Biofouling 20:189–201PubMedCrossRefGoogle Scholar
  27. 27.
    Peulen TO, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45:3367–3373PubMedCrossRefGoogle Scholar
  28. 28.
    Nichols WW, Dorrington SM, Slack MPE, Walmskey HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32:518–523PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Robinson C (2011) Mass transfer of therapeutics through natural human plaque biofilms: a model for therapeutic delivery to pathological bacterial biofilms. Arch Oral Biology 56:829–836CrossRefGoogle Scholar
  30. 30.
    Guggenheim B, Guggenheim M, Gmur R, Giertsen E, Thurnheer (2004) Application of the Zurich biofilm model to problems of cariology. Caries Res 38:212–222PubMedCrossRefGoogle Scholar
  31. 31.
    Auschill TM, Hellwig E, Sculean A, Hein N, Arweiler NB (2004) Impact of the intraoral location on the rate of biofilm growth. Clin Oral Invest 8:97–101CrossRefGoogle Scholar
  32. 32.
    Shapiro S, Giertsen E, Guggenheim B (2002) An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res 36:93–100PubMedCrossRefGoogle Scholar
  33. 33.
    Guggenheim B, Giertsen E, Schüpbach P, Shapiro S (2001) Validation of an in vitro biofilm model of supragingival plaque. J Dent Res 80:363–370PubMedCrossRefGoogle Scholar
  34. 34.
    Foster JS, Pan PC, Kolenbrander PE (2004) Effects of antimicrobial agents on oral biofilms in a saliva-conditioned flowcell. Biofilms 1:5–12CrossRefGoogle Scholar
  35. 35.
    Ouhayoun JP (2003) Penetrating the plaque biofilm: impact of essential oil mouthwash. J Clin Periodontol 30(Suppl 5):10–12PubMedCrossRefGoogle Scholar
  36. 36.
    Hope CK, Wilson M (2004) Analysis of the effects of chlorhexidine on oral biofilm vitality and structure based on viability profiling and an indicator of membrane integrity. Antimicrob Agents Chemother 48:1461–1468PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Pratten J, Wilson M (1999) Antimicrobial susceptibility and composition of microcosm dental plaques supplemented with sucrose. Antimicrob Agents Chemother 43:1595–1599PubMedCentralPubMedGoogle Scholar
  38. 38.
    von Ohle C, Gieseke A, Nistico L, Decker EM, DeBeer D, Stoodley P (2010) Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 76:2326–2334CrossRefGoogle Scholar
  39. 39.
    Sandt C, Barbeau J, Gagnon MA, Lafleur M (2007) Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms. J Antimicrob Chemother 60:1281–1287PubMedCrossRefGoogle Scholar
  40. 40.
    Vitkov L, Hermann A, Krautgartner WD, Herrmann M, Fuchs K, Klappacher M, Hannig M (2005) Chlorhexidine-induced ultrastructural alterations in oral biofilm. Microsc Res Tech 68:85–89PubMedCrossRefGoogle Scholar
  41. 41.
    Cheung HY, Wong MM, Cheung SH, Liang LY, Lam YW, Chiu SK (2012) Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli. PLoS One 7:e36659PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210PubMedCrossRefGoogle Scholar
  43. 43.
    Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria atsingle-cell level. Microbes Infect 2(12):1523–1535PubMedCrossRefGoogle Scholar
  44. 44.
    Decker EM (2001) The ability of direct fluorescence-based, two-colour assays to detect different phythiological states or oral streptococci. Lett Appl Microbiol 33(3):188–192PubMedCrossRefGoogle Scholar
  45. 45.
    Sträuber H, Müller S (2010) Viability states of bacteria- specific mechanisms of selected probes. Cytometry A 77(7):623–634PubMedCrossRefGoogle Scholar
  46. 46.
    Davey HM (2011) Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77(16):5571–5576PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C (2012) Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 17(3):841–850. doi: 10.1007/s00784-012-0792-3 PubMedCrossRefGoogle Scholar
  48. 48.
    Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S (2007) Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 71:592–598PubMedCrossRefGoogle Scholar
  50. 50.
    Biggerstaff JP, Le Puil M, Weidow BL, Prater J, Glass K, Radosevich M, White DC (2006) New methodology for viability testing in environmental samples. Mol Cell Probes 20:141–146PubMedCrossRefGoogle Scholar
  51. 51.
    Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13:163–171PubMedCrossRefGoogle Scholar
  52. 52.
    Karthikeyan R, Amaechi BT, Rawls HR, Lee VA (2011) Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol 56:437–445PubMedCrossRefGoogle Scholar
  53. 53.
    Stocks SM (2004) Mechanism and use of the commercially avairable viability stain, BacLight. Cytometry A 61:189–195PubMedCrossRefGoogle Scholar
  54. 54.
    Takenaka S, Ohshima H, Ohsumi T, Okiji T (2012) Current and future strategies for the control of mature oral biofilms—shift from a bacteria-targeting to a matrix-targeting approach. J Oral Biosci 54:173–179CrossRefGoogle Scholar
  55. 55.
    Herles S, Olsen S, Afflitto J, Gaffar A (1994) Chemostat flow cell system: an in vitro model for the evaluation of antiplaque agents. J Dent Res 73:1748–1755PubMedGoogle Scholar
  56. 56.
    Auschill TM, Hein N, Hellwig E, Follo M, Sculean A, Arweiler NB (2005) Effect of two antimicrobial agents on early in situ biofilm formation. J Clin Periodontol 32:147–152PubMedCrossRefGoogle Scholar
  57. 57.
    Arweiler NB, Lenz R, Sculean A, Al-Ahmad A, Hellwig E, Auschill TM (2008) Effect of food preservatives on in situ biofilm formation. Clin Oral Invest 12:203–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rika Wakamatsu
    • 1
  • Shoji Takenaka
    • 1
  • Tatsuya Ohsumi
    • 1
  • Yutaka Terao
    • 2
  • Hayato Ohshima
    • 3
  • Takashi Okiji
    • 1
  1. 1.Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health ScienceNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  2. 2.Division of Microbiology and Infectious Diseases, Department of Oral Health ScienceNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  3. 3.Division of Anatomy and Cell Biology of the Hard Tissue Department of Tissue Regeneration and ReconstructionNiigata University Graduate School of Medical and Dental SciencesNiigataJapan

Personalised recommendations