Clinical Oral Investigations

, Volume 18, Issue 2, pp 471–478 | Cite as

Effects of enamel matrix proteins in combination with a bovine-derived natural bone mineral for the repair of bone defects

  • Richard J. Miron
  • Lingfei Wei
  • Dieter D. Bosshardt
  • Daniel Buser
  • Anton Sculean
  • Yufeng ZhangEmail author
Original Article



Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM.

Materials and methods

Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed.


Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05).


The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects.

Clinical relevance

These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.


Enamel matrix derivative EMD Emdogain Natural bone mineral Bio-Oss Bone grafting materials 



This project was supported by Program for New Century Excellent Talents in University (NCET-11-0414) and Excellent Youth Foundation of Hubei.

Conflict of interest

The authors report no conflict of interest for this study.


  1. 1.
    Sculean A, Alessandri R, Miron R, Salvi G, Bosshard DD (2011) Enamel matrix proteins and periodontal wound healing and regeneration. Clin Adv Periodontics 1:101–117CrossRefGoogle Scholar
  2. 2.
    Aspriello SD, Ferrante L, Rubini C, Piemontese M (2011) Comparative study of DFDBA in combination with enamel matrix derivative versus DFDBA alone for treatment of periodontal intrabony defects at 12 months post-surgery. Clin Oral Investig 15:225–232PubMedCrossRefGoogle Scholar
  3. 3.
    Pietruska M, Pietruski J, Nagy K, Brecx M, Arweiler NB et al (2012) Four-year results following treatment of intrabony periodontal defects with an enamel matrix derivative alone or combined with a biphasic calcium phosphate. Clin Oral Investig 16:1191–1197PubMedCrossRefGoogle Scholar
  4. 4.
    Oortgiesen DA, Meijer GJ, Bronckers AL, Walboomers XF, Jansen JA (2013) Regeneration of the periodontium using enamel matrix derivative in combination with an injectable bone cement. Clin Oral Investig 17:411–421PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lyngstadaas SP, Wohlfahrt JC, Brookes SJ, Paine ML, Snead ML et al (2009) Enamel matrix proteins; old molecules for new applications. Orthod Craniofacial Res 12:243–253CrossRefGoogle Scholar
  6. 6.
    Margolis HC, Beniash E, Fowler CE (2006) Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 85:775–793PubMedCrossRefGoogle Scholar
  7. 7.
    Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML et al (2006) Protein–protein interactions of the developing enamel matrix. Curr Top Dev Biol 74:57–115, 3PubMedCrossRefGoogle Scholar
  8. 8.
    Guida L, Annunziata M, Belardo S, Farina R, Scabbia A et al (2007) Effect of autogenous cortical bone particulate in conjunction with enamel matrix derivative in the treatment of periodontal intraosseous defects. J Periodontol 78:231–238PubMedCrossRefGoogle Scholar
  9. 9.
    Kuru B, Yilmaz S, Argin K, Noyan U (2006) Enamel matrix derivative alone or in combination with a bioactive glass in wide intrabony defects. Clin Oral Investig 10:227–234PubMedCrossRefGoogle Scholar
  10. 10.
    Velasquez-Plata D, Scheyer ET, Mellonig JT (2002) Clinical comparison of an enamel matrix derivative used alone or in combination with a bovine-derived xenograft for the treatment of periodontal osseous defects in humans. J Periodontol 73:433–440PubMedCrossRefGoogle Scholar
  11. 11.
    Lekovic V, Camargo PM, Weinlaender M, Nedic M, Aleksic Z et al (2000) A comparison between enamel matrix proteins used alone or in combination with bovine porous bone mineral in the treatment of intrabony periodontal defects in humans. J Periodontol 71:1110–1116PubMedCrossRefGoogle Scholar
  12. 12.
    Zucchelli G, Amore C, Montebugnoli L, De Sanctis M (2003) Enamel matrix proteins and bovine porous bone mineral in the treatment of intrabony defects: a comparative controlled clinical trial. J Periodontol 74:1725–1735PubMedCrossRefGoogle Scholar
  13. 13.
    Gurinsky BS, Mills MP, Mellonig JT (2004) Clinical evaluation of demineralized freeze-dried bone allograft and enamel matrix derivative versus enamel matrix derivative alone for the treatment of periodontal osseous defects in humans. J Periodontol 75:1309–1318PubMedCrossRefGoogle Scholar
  14. 14.
    Trombelli L, Farina R (2008) Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J Clin Periodontol 35:117–135PubMedCrossRefGoogle Scholar
  15. 15.
    Miron RJ, Bosshardt DD, Hedbom E, Zhang Y, Haenni B et al (2012) Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation. J Periodontol 83:936–947PubMedCrossRefGoogle Scholar
  16. 16.
    Miron RJ, Bosshardt DD, Zhang Y, Buser D, Sculean A (2013) Gene array of primary human osteoblasts exposed to enamel matrix derivative in combination with a natural bone mineral. Clin Oral Investig 17:405–410PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang Y, Cheng N, Miron R, Shi B, Cheng X (2012) Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 33:6698–6708PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang Y, Wu C, Luo T, Li S, Cheng X et al (2012) Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration. Bone 51:704–713PubMedCrossRefGoogle Scholar
  19. 19.
    Wang L, Fan H, Zhang ZY, Lou AJ, Pei GX et al (2010) Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 31:9452–9461PubMedCrossRefGoogle Scholar
  20. 20.
    Wang CJ, Zhou ZG, Holmqvist A, Zhang H, Li Y et al (2009) Survivin expression quantified by Image Pro-Plus compared with visual assessment. Appl Immunohistochem Mol Morphol 17:530–535PubMedCrossRefGoogle Scholar
  21. 21.
    Bosshardt DD (2008) Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 35:87–105PubMedCrossRefGoogle Scholar
  22. 22.
    Kasaj A, Willershausen B, Junker R, Stratul SI, Schmidt M (2012) Human periodontal ligament fibroblasts stimulated by nanocrystalline hydroxyapatite paste or enamel matrix derivative. An in vitro assessment of PDL attachment, migration, and proliferation. Clin Oral Investig 16:745–754PubMedCrossRefGoogle Scholar
  23. 23.
    Mrozik KM, Gronthos S, Menicanin D, Marino V, Bartold PM (2012) Effect of coating Straumann bone ceramic with Emdogain on mesenchymal stromal cell hard tissue formation. Clin Oral Investig 16:867–878PubMedCrossRefGoogle Scholar
  24. 24.
    Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Jager A et al (2012) Anti-inflammatory effects of EMD in the presence of biomechanical loading and interleukin-1β in vitro. Clin Oral Investig 16:275–283PubMedCrossRefGoogle Scholar
  25. 25.
    Miron RJ, Hedbom E, Ruggiero S, Bosshardt DD, Zhang Y et al (2011) Premature osteoblast clustering by enamel matrix proteins induces osteoblast differentiation through up-regulation of connexin 43 and N-cadherin. PLoS One 6:e23375PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kawana F, Sawae Y, Sahara T, Tanaka S, Debari K et al (2001) Porcine enamel matrix derivative enhances trabecular bone regeneration during wound healing of injured rat femur. Anat Rec 264:438–446PubMedCrossRefGoogle Scholar
  27. 27.
    Potijanyakul P, Sattayasansakul W, Pongpanich S, Leepong N, Kintarak S (2010) Effects of enamel matrix derivative on bioactive glass in rat calvarium defects. J Oral Implantol 36:195–204PubMedCrossRefGoogle Scholar
  28. 28.
    Donos N, Lang NP, Karoussis IK, Bosshardt D, Tonetti M et al (2004) Effect of GBR in combination with deproteinized bovine bone mineral and/or enamel matrix proteins on the healing of critical-size defects. Clin Oral Implants Res 15:101–111PubMedCrossRefGoogle Scholar
  29. 29.
    Intini G, Andreana S, Buhite RJ, Bobek LA (2008) A comparative analysis of bone formation induced by human demineralized freeze-dried bone and enamel matrix derivative in rat calvaria critical-size bone defects. J Periodontol 79:1217–1224PubMedCrossRefGoogle Scholar
  30. 30.
    Cornelini R, Scarano A, Piattelli M, Andreana S, Covani U et al (2004) Effect of enamel matrix derivative (Emdogain) on bone defects in rabbit tibias. J Oral Implantol 30:69–73PubMedCrossRefGoogle Scholar
  31. 31.
    Casati MZ, Sallum EA, Nociti FH Jr, Caffesse RG, Sallum AW (2002) Enamel matrix derivative and bone healing after guided bone regeneration in dehiscence-type defects around implants. A histomorphometric study in dogs. J Periodontol 73:789–796PubMedCrossRefGoogle Scholar
  32. 32.
    Amin HD, Olsen I, Knowles JC, Dard M, Donos N (2013) Effects of enamel matrix proteins on multi-lineage differentiation of periodontal ligament cells in vitro. Acta Biomater 9:4796–4805PubMedCrossRefGoogle Scholar
  33. 33.
    Boyan BD, Weesner TC, Lohmann CH, Andreacchio D, Carnes DL et al (2000) Porcine fetal enamel matrix derivative enhances bone formation induced by demineralized freeze dried bone allograft in vivo. J Periodontol 71:1278–1286PubMedCrossRefGoogle Scholar
  34. 34.
    Dean DD, Lohmann CH, Sylvia VL, Cochran DL, Liu Y et al (2002) Effect of porcine fetal enamel matrix derivative on chondrocyte proliferation, differentiation, and local factor production is dependent on cell maturation state. Cells Tissues Organs 171:117–127PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Richard J. Miron
    • 1
    • 2
  • Lingfei Wei
    • 1
  • Dieter D. Bosshardt
    • 2
  • Daniel Buser
    • 3
  • Anton Sculean
    • 2
  • Yufeng Zhang
    • 1
    • 4
    Email author
  1. 1.The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of StomatologyWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
  3. 3.Department of Oral Surgery and Stomatology, School of Dental MedicineUniversity of BernBernSwitzerland
  4. 4.Department of Oral Implantology, School of StomatologyWuhan UniversityWuhanChina

Personalised recommendations