Clinical Oral Investigations

, Volume 17, Issue 3, pp 841–850

Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm

  • P. N. Tawakoli
  • A. Al-Ahmad
  • W. Hoth-Hannig
  • M. Hannig
  • C. Hannig
Original Article

Abstract

Objectives

The aim of the present study was to investigate different fluorescence-based, two-color viability assays for visualization and quantification of initial bacterial adherence and to establish reliable alternatives to the ethidium bromide staining procedure.

Materials and methods

Bacterial colonization was attained in situ on bovine enamel slabs (n = 6 subjects). Five different live/dead assays were investigated (fluorescein diacetate (FDA)/propidium iodide (PI), Syto 9/PI (BacLight®), FDA/Sytox red, Calcein acetoxymethyl (AM)/Sytox red, and carboxyfluorescein diacetate (CFDA)/Sytox red). After 120 min of oral exposure, analysis was performed with an epifluorescence microscope. Validation was carried out, using the colony-forming units for quantification and the transmission electron microscopy for visualization after staining.

Results

The average number of bacteria amounted to 2.9 ± 0.8 × 104 cm−2. Quantification with Syto 9/PI and Calcein AM/Sytox red yielded an almost equal distribution of cells (Syto 9/PI 45 % viable, 55 % avital; Calcein AM/Sytox red 52 % viable, 48 % avital). The live/dead ratio of CFDA/Sytox red and FDA/Sytox red was 3:2. An aberrant dispersal was recorded with FDA/PI (viable 34 %, avital 66 %). The TEM analysis indicated that all staining procedures affect the structural integrity of the bacterial cells considerably.

Conclusion

The following live/dead assays are reliable techniques for differentiation of viable and avital adherent bacteria: BacLight, FDA/Sytox red, Calcein AM/Sytox red, and CFDA/Sytox red. These fluorescence-based techniques are applicable alternatives to toxic and instable conventional assays, such as the staining procedure based on ethidium bromide.

Clinical relevance

Differentiation of viable and avital adherent bacteria offers the possibility for reliable evaluation of different mouth rinses, oral medication, and disinfections.

Keywords

Live/dead staining Viability Adherent bacteria Initial biofilm CFU TEM 

References

  1. 1.
    Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A (2007) Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 52:1048–1056PubMedCrossRefGoogle Scholar
  2. 2.
    Hannig C, Hannig M (2009) Enzyme in der Pellikel—eine Synopsis. Dtsch Zahnärztl Z 64:533–547Google Scholar
  3. 3.
    Lendenmann U, Grogan J, Oppenheim FG (2000) Saliva and dental pellicle—a review. Adv Dent Res 14:22–28PubMedCrossRefGoogle Scholar
  4. 4.
    Hannig M, Joiner A (2006) The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64PubMedGoogle Scholar
  5. 5.
    Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69–86PubMedCrossRefGoogle Scholar
  6. 6.
    Hannig M, Hannig C (2007) Der initiale orale Biofilm—pathogen oder protektiv? Oralprophylaxe 29:73–82Google Scholar
  7. 7.
    Hannig M, Hannig C (2007) Does a dental biofilm, free of bacteria, exist in situ? Parodontologie et Implantologie orale 26:187–200Google Scholar
  8. 8.
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732PubMedCrossRefGoogle Scholar
  9. 9.
    Thurnheer T, Gmur R, Giertsen E, Guggenheim B (2001) Automated fluorescent in situ hybridization for the specific detection and quantification of oral streptococci in dental plaque. J Microbiol Methods 44:39–47PubMedCrossRefGoogle Scholar
  10. 10.
    Al-Ahmad A, Follo M, Selzer AC, Hellwig E, Hannig M, Hannig C (2009) Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. J Med Microbiol 58:1359–1366PubMedCrossRefGoogle Scholar
  11. 11.
    Hannig C, Follo M, Hellwig E, Al-Ahmad A (2010) Visualization of adherent micro-organisms using different techniques. J Med Microbiol 59:1–7PubMedCrossRefGoogle Scholar
  12. 12.
    Decker EM (2001) The ability of direct fluorescence-based, two-colour assays to detect different physiological states of oral streptococci. Lett Appl Microbiol 33:188–192PubMedCrossRefGoogle Scholar
  13. 13.
    Netuschil L, Weiger R, Preisler R, Brecx M (1995) Plaque bacteria counts and vitality during chlorhexidine, meridol and listerine mouthrinses. Eur J Oral Sci 103:355–361PubMedCrossRefGoogle Scholar
  14. 14.
    Netuschil L, Reisch E, Unteregger G, Sculean A, Brecx M (1998) A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol 43:277–285PubMedCrossRefGoogle Scholar
  15. 15.
    Shapiro HM (2008) Flow cytometry of bacterial membrane potential and permeability. Meth Mol Med 142:175–186CrossRefGoogle Scholar
  16. 16.
    Al-Ahmad A, Wiedmann-Al-Ahmad M, Auschill TM, Follo M, Braun G, Hellwig E, Arweiler NB (2008) Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro. Arch Oral Biol 53:765–772PubMedCrossRefGoogle Scholar
  17. 17.
    Pan PC, Harper S, Ricci-Nittel D, Lux R, Shi W (2010) In-vitro evidence for efficiency of antimicrobial mouthrinses. J Dent 38:16–20CrossRefGoogle Scholar
  18. 18.
    Netuschil L (1983) Vital staining of plaque microorganisms using fluorescein diacetate and ethidium bromide. Dtsch Zahnarztl Z 38:914–917PubMedGoogle Scholar
  19. 19.
    Breeuwer P, Drocourt JL, Bunschoten N, Zwietering MH, Rombouts FM, Abee T (1995) Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol 61:1614–1619PubMedGoogle Scholar
  20. 20.
    Guilbault GG, Kramer DN (1965) Fluorometric procedure for measuring the activity of dehydrogenases. Anal Chem 37:1219–1221PubMedCrossRefGoogle Scholar
  21. 21.
    Peak E, Chalmers IW, Hoffmann KF (2010) Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma viability. PLoS Negl Trop Dis 4:e759PubMedCrossRefGoogle Scholar
  22. 22.
    Leeder JS, Dosch HM, Harper PA, Lam P, Spielberg SP (1989) Fluorescence-based viability assay for studies of reactive drug intermediates. Anal Biochem 177:364–372PubMedCrossRefGoogle Scholar
  23. 23.
    Liminga G, Jonsson B, Nygren P, Larsson R (1999) On the mechanism underlying calcein-induced cytotoxicity. Eur J Pharmacol 383:321–329PubMedCrossRefGoogle Scholar
  24. 24.
    Wojcik K, Dobrucki JW (2008) Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells—influence on chromatin organization and histone–DNA interactions. Cytometry A 73:555–562PubMedGoogle Scholar
  25. 25.
    Cassina V, Seruggia D, Beretta GL, Salerno D, Brogioli D, Manzini S, Zunino F, Mantegazza F (2011) Atomic force microscopy study of DNA conformation in the presence of drugs. Eur Biophys J 40:59–68PubMedCrossRefGoogle Scholar
  26. 26.
    Monaco RR (2010) Capture of a transition state using molecular dynamics: creation of an intercalation site in dsDNA with ethidium cation. J Nucleic Acids 2010Google Scholar
  27. 27.
    Jr Olmsted, Kearns DR (1977) Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry 16:3647–3654PubMedCrossRefGoogle Scholar
  28. 28.
    Singer VL, Lawlor TE, Yue S (1999) Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutat Res 439:37–47PubMedCrossRefGoogle Scholar
  29. 29.
    Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431PubMedGoogle Scholar
  30. 30.
    Stevenson (1978) A case for bacterial dormancy in aquatic systems. Microb Ecol 4:127–133CrossRefGoogle Scholar
  31. 31.
    Kaprelyants AS, Gottschal JC, Kell DB (1993) Dormancy in non-sporulating bacteria. FEMS Microbiol Rev 10:271–285PubMedGoogle Scholar
  32. 32.
    Hannig C, Hannig M (2009) The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig 13:123–139PubMedCrossRefGoogle Scholar
  33. 33.
    Hannig C, Hoch J, Becker K, Hannig M, Attin T (2005) Lysozyme activity in the initially formed in situ pellicle. Arch Oral Biol 50:821–828PubMedCrossRefGoogle Scholar
  34. 34.
    Svensäter G, Bergenholtz G (2005) Biofilms in endodontic infections. Endod Top 9:27–36CrossRefGoogle Scholar
  35. 35.
    Oliver JD (1995) The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett 133:203–208PubMedCrossRefGoogle Scholar
  36. 36.
    Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Nat Biotechnol 3:817–820CrossRefGoogle Scholar
  37. 37.
    Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290PubMedCrossRefGoogle Scholar
  38. 38.
    Donelli G, Matarrese P, Fiorentini C, Dainelli B, Taraborelli T, Di Campli E, Di Bartolomeo S, Cellini L (1998) The effect of oxygen on the growth and cell morphology of Helicobacter pylori. FEMS Microbiol Lett 168:9–15PubMedCrossRefGoogle Scholar
  39. 39.
    Signoretto C, Lleo MM, Canepari P (2002) Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. Curr Microbiol 44:125–131PubMedCrossRefGoogle Scholar
  40. 40.
    Guggenheim B, Giertsen E, Schüpbach P, Shapiro S (2001) Validation of an in vitro biofilm model of supragingival plaque. J Dent Res 80:363–370PubMedCrossRefGoogle Scholar
  41. 41.
    Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776PubMedGoogle Scholar
  42. 42.
    Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13:163–171PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • P. N. Tawakoli
    • 1
  • A. Al-Ahmad
    • 2
  • W. Hoth-Hannig
    • 3
  • M. Hannig
    • 3
  • C. Hannig
    • 4
  1. 1.Clinic of Preventive Dentistry, Periodontology and Cariology, Center for Dental MedicineUniversity of ZurichZurichSwitzerland
  2. 2.Department of Operative Dentistry and PeriodontologyAlbert Ludwigs UniversityFreiburgGermany
  3. 3.Clinic of Operative Dentistry, Periodontology and Preventive DentistrySaarland UniversityHomburg/SaarGermany
  4. 4.Clinic of Conservative Dentistry, Faculty of Medicine Carl Gustav CarusTechnical University of DresdenDresdenGermany

Personalised recommendations