Clinical Oral Investigations

, Volume 17, Issue 1, pp 227–235 | Cite as

In vitro comparison of mechanical properties and degree of cure of bulk fill composites

  • Pascal Czasch
  • Nicoleta IlieEmail author
Original Article



The aim of our study was to measure and compare degree of conversion (DC) as well as micro- (indentation modulus, E; Vickers hardness, HV) and macromechanical properties (flexural strength, σ; flexural modulus, E flexural) of two recently launched bulk fill resin-based composites (RBCs): Surefil® SDR™ flow (SF) and Venus® bulk fill (VB).

Materials and methods

DC (n = 6) was investigated by Fourier transform infrared spectroscopy (FTIR) in clinical relevant filling depths (0.1, 2, and 4 mm; 6 mm bulk, 6 mm incremental) and irradiation times (10, 20, 40 s). Micro- (n = 6) and macromechanical (n = 20) properties were measured by an automatic microhardness indenter and a three-point bending test device after storing the specimens in distilled water for 24 h at 37°C. Furthermore, on the 6-mm bulk samples, the depth of cure was determined. A field emission scanning electron microscope was used to assess filler size. Results were evaluated using one-way analysis of variance, Tukey’s honest significance test post hoc test, a multivariate analysis (α = 0.05) and an independent t test. Weibull analysis was used to assess σ.


VB showed, in all depth, significant higher DC (VB, 62.4–67.4 %; SF, 57.1–61.9 %), but significant lower macro- (VB, E flexural = 3.6 GPa; σ = 122.7 MPa; SF, E flexural = 5.0 GPa; σ = 131.8 MPa) and micromechanical properties (VB, E = 7.3–8.8 GPa, HV = 40.7–46.5 N/mm²; SF, E = 10.6–12.2 GPa, HV = 55.1–61.1 N/mm²). Both RBCs showed high reliability (VB, m = 21.6; SF, m = 26.7) and a depth of cure of at least 6 mm at all polymerization times. The factor “RBC” showed the strongest influence on the measured properties (η 2 = 0.35–0.80) followed by “measuring depth” (η 2 = 0.10–0.46) and “polymerization time” (η 2 = 0.03–0.12).


Significant differences between both RBCs were found for DC, E, σ, and E flexural at all irradiation times and measuring depths.

Clinical relevance

Curing the RBCs in 4-mm bulks for 20 s can be recommended.


Bulk fill Composite Macromechanical properties Micromechanical properties Degree of conversion 


  1. 1.
    Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27:29–38. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  2. 2.
  3. 3.
    Chen HY, Manhart J, Hickel R, Kunzelmann KH (2001) Polymerization contraction stress in light-cured packable composite resins. Dent Mater 17:253–259PubMedCrossRefGoogle Scholar
  4. 4.
    Davidson CL, de Gee AJ, Feilzer A (1984) The competition between the composite–dentin bond strength and the polymerization contraction stress. J Dent Res 63:1396–1399PubMedCrossRefGoogle Scholar
  5. 5.
    Leinfelder KF (1995) Posterior composite resins: the materials and their clinical performance. J Am Dent Assoc 126(5):663–672PubMedGoogle Scholar
  6. 6.
    Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH (1996) A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent 21:17–24PubMedGoogle Scholar
  7. 7.
    McCullock AJ, Smith BG (1986) In vitro studies of cusp reinforcement with adhesive restorative material. Br Dent J 161:450–452PubMedCrossRefGoogle Scholar
  8. 8.
    Alomari QD, Reinhardt JW, Boyer DB (2001) Effect of liners on cusp deflection and gap formation in composite restorations. Oper Dent 26:406–411PubMedGoogle Scholar
  9. 9.
    Surefil® SDR™ flow Product Brochure (2010) Dentsply international.
  10. 10.
    Burgess J, Cakir D (2010) Comparative properties of low-shrinkage composite resins. Compend Contin Educ Dent 31(2):10–15PubMedGoogle Scholar
  11. 11.
    Ilie N, Hickel R (2011) Investigations on a methacrylate-based flowable composite based on the SDR technology. Dent Mater 27:348–355. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  12. 12.
    de Biasi M, Calvi RM, Sossi D, Maglione M, Angerame D (2010) Microhardness of a new flowable composite liner for posterior restorations. Dent Mater 26:e25–e25. doi: DOI:10.1016/ CrossRefGoogle Scholar
  13. 13.
    Ilie N, Hickel R (2010) Shrinkage behaviour of novel flowable composites based on the SDR(TM) technology. Dent Mater 26:e130–e130. doi: DOI:10.1016/ CrossRefGoogle Scholar
  14. 14.
    Giovannetti A, Goracci C, Polimeni A, Pacifici E, Ferrari M (2010) Post retention using a new resin-based composite with low curing stress. Dent Mater 26:e72–e72. doi: DOI:10.1016/ CrossRefGoogle Scholar
  15. 15.
    Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G New insight into the “depth of cure” of dimethacrylate-based dental composites. Dent Mater. doi: 10.1016/
  16. 16.
    Moore BK, Platt JA, Borges G, Chu TM, Katsilieri I (2008) Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 33:408–412PubMedCrossRefGoogle Scholar
  17. 17.
    Hansen EK, Asmussen E (1997) Visible-light curing units: correlation between depth of cure and distance between exit window and resin surface. Acta Odontol Scand 55:162–166PubMedCrossRefGoogle Scholar
  18. 18.
    Pires JA, Cvitko E, Denehy GE, Swift EJ Jr (1993) Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int 24:517–521PubMedGoogle Scholar
  19. 19.
    Price RB, Derand T, Sedarous M, Andreou P, Loney RW (2000) Effect of distance on the power density from two light guides. J Esthet Dent 12:320–327PubMedCrossRefGoogle Scholar
  20. 20.
    Ernst CP, Meyer GR, Muller J, Stender E, Ahlers MO, Willershausern B (2004) Depth of cure of LED vs QTH light-curing devices at a distance of 7 mm. J Adhes Dent 6:141–150PubMedGoogle Scholar
  21. 21.
    Surefil®SDR™ flow Posterior Bulk Fill Flowable Base—Directions for use (2009) DENTSPLY Caulk.
  22. 22.
    Venus® bulk fill—Instructions for use (2010) Heraeus Kulzer.
  23. 23.
    Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829PubMedCrossRefGoogle Scholar
  24. 24.
    Vertise Flow Technical Bulletin (2011)
  25. 25.
    Vertise Flow-Product details—FAQ (2010)
  26. 26.
    Buonocore MG (1955) A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34:849–853PubMedCrossRefGoogle Scholar
  27. 27.
    Glenn JF (1979) Comments on Dr. Bowen’s presentation. J Dent Res 58:1504–1506. doi: 10.1177/00220345790580051401 PubMedCrossRefGoogle Scholar
  28. 28.
    Ling L, Xu X, Choi GY, Billodeaux D, Guo G, Diwan RM (2009) Novel F-releasing composite with improved mechanical properties. J Dent Res 88:83–88. doi: 10.1177/0022034508328254 PubMedCrossRefGoogle Scholar
  29. 29.
    Asmussen E (1983) Factors affecting the color stability of restorative resins. Acta Odontol Scand 41:11–18PubMedCrossRefGoogle Scholar
  30. 30.
  31. 31.
    Amirouche-Korichi A, Mouzali M, Watts DC (2009) Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage strain of dental resin composites. Dent Mater 25:1411–1418. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  32. 32.
    Ferracane JL, Greener EH (1986) The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res 20:121–131. doi: 10.1002/jbm.820200111 PubMedCrossRefGoogle Scholar
  33. 33.
    Scougall-Vilchis RJ, Hotta Y, Hotta M, Idono T, Yamamoto K (2009) Examination of composite resins with electron microscopy, microhardness tester and energy dispersive X-ray microanalyzer. Dent Mater J 28:102–112PubMedCrossRefGoogle Scholar
  34. 34.
    Alvarez-Gayosso C, Barcelo-Santana F, Guerrero-Ibarra J, Saez-Espinola G, Canseco-Martinez MA (2004) Calculation of contraction rates due to shrinkage in light-cured composites. Dent Mater 20:228–235. doi: 10.1016/s0109-5641(03)00097-6 PubMedCrossRefGoogle Scholar
  35. 35.
    Ellakwa A, Cho N, Lee IB (2007) The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dent Mater 23:1229–1235. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  36. 36.
    Ge J, Trujillo M, Stansbury J (2005) Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups. Dent Mater 21:1163–1169. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  37. 37.
    Lee JH, Um CM, Lee IB (2006) Rheological properties of resin composites according to variations in monomer and filler composition. Dent Mater 22:515–526. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  38. 38.
    Kim KH, Ong JL, Okuno O (2002) The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 87:642–649PubMedCrossRefGoogle Scholar
  39. 39.
    Manhart J, Kunzelmann KH, Chen HY, Hickel R (2000) Mechanical properties and wear behavior of light-cured packable composite resins. Dent Mater 16:33–40PubMedCrossRefGoogle Scholar
  40. 40.
    Frauscher KE, Ilie N (2011) Depth of cure and mechanical properties of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin Oral Investig. doi: 10.1007/s00784-011-0647-3
  41. 41.
    Li Y, Swartz ML, Phillips RW, Moore BK, Roberts TA (1985) Effect of filler content and size on properties of composites. J Dent Res 64:1396–1401PubMedCrossRefGoogle Scholar
  42. 42.
    Pilo R, Cardash HS (1992) Post-irradiation polymerization of different anterior and posterior visible light-activated resin composites. Dent Mater 8:299–304PubMedCrossRefGoogle Scholar
  43. 43.
    Hansen EK, Asmussen E (1993) Correlation between depth of cure and surface hardness of a light-activated resin. Scand J Dent Res 101:62–64PubMedGoogle Scholar
  44. 44.
    Akram S, Ali Abidi SY, Ahmed S, Meo AA, Fazal-Ur-Rehman Q (2011) Effect of different irradiation times on microhardness and depth of cure of a nanocomposite resin. J Coll Phys Surg Pak 21:411–414. doi: 07.2011/jcpsp.411414 Google Scholar
  45. 45.
    Shawkat ES, Shortall AC, Addison O, Palin WM (2009) Oxygen inhibition and incremental layer bond strengths of resin composites. Dent Mater 25:1338–1346. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  46. 46.
    Versluis A, Tantbirojn D, Douglas WH (1998) Do dental composites always shrink toward the light? J Dent Res 77:1435–1445PubMedCrossRefGoogle Scholar
  47. 47.
    Kakaboura A, Rahiotis C, Watts D, Silikas N, Eliades G (2007) 3D-marginal adaptation versus setting shrinkage in light-cured microhybrid resin composites. Dent Mater 23:272–278. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  48. 48.
    Baroudi K, Silikas N, Watts DC (2008) Edge-strength of flowable resin composites. J Dent 36:63–68. doi: 10.1016/j.jdent.2007.10.006 PubMedCrossRefGoogle Scholar
  49. 49.
    Tjandrawinata R, Irie M, Suzuki K (2005) Flexural properties of eight flowable light-cured restorative materials, in immediate vs 24-hour water storage. Oper Dent 30:239–249PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Restorative DentistryDental School of Ludwig-Maximilians-UniversityMunichGermany

Personalised recommendations