Clinical Oral Investigations

, Volume 17, Issue 1, pp 301–309 | Cite as

Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces

  • Thomas ZiebartEmail author
  • Anne Schnell
  • Christian Walter
  • Peer W. Kämmerer
  • Andreas Pabst
  • Karl M. Lehmann
  • Johanna Ziebart
  • Marc O. Klein
  • Bilal Al-Nawas
Original Article



Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces.

Materials and methods

EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction.


Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces.


The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities.

Clinical relevance

In correlation with recent clinical studies these results underline the hypothesis that EPC could promote and increase neovascularization by secreting paracrine factors which support osseointegration of dental implants.


Endothelial progenitor cell EPC Stem cell Titanium implant surface SLA SLActive Hydrophilicity 



We thank Kathy Taylor for orthographic correction of the article.

Conflict of interest statement

This study was supported by the ITI Foundation for the Promotion of Implantology, Basel, Switzerland, 08/2008 (Dr. Thomas Ziebart).


  1. 1.
    Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL et al (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83:529–533PubMedCrossRefGoogle Scholar
  2. 2.
    Oates TW, Valderrama P, Bischof M, Nedir R, Jones A, Simpson J et al (2007) Enhanced implant stability with a chemically modified SLA surface: a randomized pilot study. Int J Oral Maxillofac Implants 22:755–760PubMedGoogle Scholar
  3. 3.
    Schätzle M, Männchen R, Balbach U, Hämmerle CH, Toutenburg H, Jung RE (2009) Stability change of chemically modified sandblasted/acid-etched titanium palatal implants. A randomized-controlled clinical trial. Clin Oral Implants Res 20:489–495PubMedCrossRefGoogle Scholar
  4. 4.
    Klein MO, Bijelic A, Toyoshima T, Götz H, von Koppenfels RL, Al-Nawas B et al (2010) Longterm response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clin Oral Implants Res 21:642–649PubMedCrossRefGoogle Scholar
  5. 5.
    Rausch-Fan X, Qu Z, Wieland M, Matejka M, Schedle A (2008) Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater 24:102–110PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL et al (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res 74:49–58CrossRefGoogle Scholar
  7. 7.
    Qu Z, Rausch-Fan X, Wieland M, Matejka M, Schedle A (2007) The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res 82:658–668CrossRefGoogle Scholar
  8. 8.
    Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S (2005) Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater 73:88–96PubMedGoogle Scholar
  9. 9.
    Kämmerer PW, Heller M, Brieger J, Klein MO, Al-Nawas B, Gabriel M (2011) Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Eur Cell Mater 21:364–372PubMedGoogle Scholar
  10. 10.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  11. 11.
    Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637PubMedCrossRefGoogle Scholar
  12. 12.
    Ahmadi H, Baharvand H, Ashtiani SK, Soleimani M, Sadeghian H, Ardekani JM et al (2007) Safety analysis and improved cardiac function following local autologous transplantation of CD133(+) enriched bone marrow cells after myocardial infarction. Curr Neurovasc Res 4:153–160PubMedCrossRefGoogle Scholar
  13. 13.
    Ott I, Keller U, Knoedler M, Götze KS, Doss K, Fischer P et al (2005) Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. FASEB J 19:992–994PubMedGoogle Scholar
  14. 14.
    Krenning G, van Luyn MJ, Harmsen MC (2009) Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med 15:180–189PubMedCrossRefGoogle Scholar
  15. 15.
    Dome B, Dobos J, Tovari J, Paku S, Kovacs G, Ostoros G et al (2008) Circulating bone marrow-derived endothelial progenitor cells: characterization, mobilization, and therapeutic considerations in malignant disease. Cytometry Part A 73:186–193CrossRefGoogle Scholar
  16. 16.
    Ziebart T, Yoon CH, Trepels T, Wietelmann A, Braun T, Kiessling F et al (2008) Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ Res 103:1327–1334PubMedCrossRefGoogle Scholar
  17. 17.
    Yamahara K, Itoh H (2009) Potential use of endothelial progenitor cells for regeneration of the vasculature. Ther Adv Cardiovasc Dis 3:17–27PubMedCrossRefGoogle Scholar
  18. 18.
    Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674PubMedCrossRefGoogle Scholar
  19. 19.
    Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353PubMedCrossRefGoogle Scholar
  20. 20.
    Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM et al (2005) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39:733–742PubMedCrossRefGoogle Scholar
  21. 21.
    Krenning G, van der Strate BW, Schipper M, van Seijen XJ, Fernandes BC, van Luyn MJ et al (2009) CD34(+) cells augment endothelial cell differentiation of CD14(+) endothelial progenitor cells in vitro. J Cell Mol Med 13:2521–2533PubMedCrossRefGoogle Scholar
  22. 22.
    Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A et al (2008) A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 314:430–440PubMedCrossRefGoogle Scholar
  23. 23.
    Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102PubMedCrossRefGoogle Scholar
  24. 24.
    Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG et al (2003) Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93:1023–1025PubMedCrossRefGoogle Scholar
  25. 25.
    Yang Z, Di Santo S, Kalka C (2010) Current developments in the use of stem cell for therapeutic neovascularisation: is the future therapy “cell-free”? Swiss Med Wkly 140:w13130PubMedGoogle Scholar
  26. 26.
    Nagano M, Yamashita T, Hamada H, Ohneda K, Kimura K, Nakagawa T et al (2007) Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood 110:151–160PubMedCrossRefGoogle Scholar
  27. 27.
    Dimmeler S, Zeiher A (2005) Stammzelltherapie in der kardiologie: stand und perspektiven. Uni-Med, BremenGoogle Scholar
  28. 28.
    Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376PubMedCrossRefGoogle Scholar
  29. 29.
    Guthrie SM, Curtis LM, Mames RN, Simon GG, Grant MB, Scott EW (2005) The nitric oxide pathway modulates hemangioblast activity of adult hematopoietic stem cells. Blood 105:1916–1922PubMedCrossRefGoogle Scholar
  30. 30.
    Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J (2006) Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res 76:323–334CrossRefGoogle Scholar
  31. 31.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7PubMedCrossRefGoogle Scholar
  32. 32.
    Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD (2010) Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials 31:4909–4917PubMedCrossRefGoogle Scholar
  33. 33.
    Uggeri J, Guizzardi S, Scandroglio R, Gatti R (2010) Adhesion of human osteoblasts to titanium: a morpho-functional analysis with confocal microscopy. Micron 41:210–219PubMedCrossRefGoogle Scholar
  34. 34.
    Kokubu E, Hamilton DW, Inoue T, Brunette DM (2009) Modulation of human gingival fibroblast adhesion, morphology, tyrosine phosphorylation, and ERK 1/2 localization on polished, grooved and SLA substratum topographies. J Biomed Mater Res 91:663–670CrossRefGoogle Scholar
  35. 35.
    Lavenus S, Pilet P, Guicheux J, Weiss P, Louarn G, Layrolle P (2011) Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomaterialia 7:1525–1534PubMedCrossRefGoogle Scholar
  36. 36.
    An N, Schedle A, Wieland M, Andrukhov O, Matejka M, Rausch-Fan X (2010) Proliferation, behavior, and cytokine gene expression of human umbilical vascular endothelial cells in response to different titanium surfaces. J Biomed Mater Res 93:364–372Google Scholar
  37. 37.
    Kawahara H, Soeda Y, Niwa K, Takahashi M, Kawahara D, Araki N (2004) In vitro study on bone formation and surface topography from the standpoint of biomechanics. J Mater Sci Mater Med 15:1297–1307PubMedCrossRefGoogle Scholar
  38. 38.
    Schwartz Z, Nasazky E, Boyan BD (2005) Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration. The Alpha Omegan 98:9–19PubMedGoogle Scholar
  39. 39.
    Wieland M, Textor M, Chehroudi B, Brunette DM (2005) Synergistic interaction of topographic features in the production of bone-like nodules on Ti surfaces by rat osteoblasts. Biomaterials 26:1119–1130PubMedCrossRefGoogle Scholar
  40. 40.
    Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD (2006) Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin Oral Implants Res 17:258–264PubMedCrossRefGoogle Scholar
  41. 41.
    Boyan BD, Schwartz Z, Lohmann CH, Sylvia VL, Cochran DL, Dean DD et al (2003) Pretreatment of bone with osteoclasts affects phenotypic expression of osteoblast-like cells. J Orthop Res 21:638–647PubMedCrossRefGoogle Scholar
  42. 42.
    Bornstein MM, Valderrama P, Jones AA, Wilson TG, Seibl R, Cochran DL (2008) Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res 19:233–241PubMedCrossRefGoogle Scholar
  43. 43.
    Lai HC, Zhuang LF, Zhang ZY, Wieland M, Liu X (2009) Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: an experimental study in dogs. Clin Oral Implants Res 20:247–253PubMedCrossRefGoogle Scholar
  44. 44.
    Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S et al (1994) Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Investig 93:662–670PubMedCrossRefGoogle Scholar
  45. 45.
    Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972PubMedCrossRefGoogle Scholar
  46. 46.
    Brandes RP (2006) Novel faces to old friends: a central role of inducible NO synthase for progenitor cell recruitment and a new antiinflammatory mechanisms of statins. Circ Res 98:303–305PubMedCrossRefGoogle Scholar
  47. 47.
    Mayr U, Zou Y, Zhang Z, Dietrich H, Hu Y, Xu Q (2006) Accelerated arteriosclerosis of vein grafts in inducible NO synthase(−/−) mice is related to decreased endothelial progenitor cell repair. Circ Res 98:412–420PubMedCrossRefGoogle Scholar
  48. 48.
    Grellier M, Ferreira-Tojais N, Bourget C, Bareille R, Guillemot F, Amede J (2009) Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells. J Cell Biochem 106:390–398PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang Y, Andrukhov O, Berner S, Matejka M, Wieland M, Rausch-Fan X et al (2010) Osteogenic properties of hydrophilic and hydrophobic titanium surfaces evaluated with osteoblast- like cells (MG63) in coculture with human umbilical vein endothelial cells (HUVEC). Dent Mater 26:1043–1051PubMedCrossRefGoogle Scholar
  50. 50.
    Malaval L, Liu F, Roche P, Aubin JE (1999) Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J Cell Biochem 74:616–627PubMedCrossRefGoogle Scholar
  51. 51.
    Asahara T (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  52. 52.
    Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) CD34- blood-derived human endothelial cell progenitors. Stem Cells 19:304–312PubMedCrossRefGoogle Scholar
  53. 53.
    Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK et al (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293PubMedCrossRefGoogle Scholar
  54. 54.
    Abou-Saleh H, Yacoub D, Theoret JF, Gillis MA, Neagoe PE, Labarthe B et al (2009) Endothelial progenitor cells bind and inhibit platelet function and thrombus formation. Circulation 120:2230–2239PubMedCrossRefGoogle Scholar
  55. 55.
    Muscari C, Gamberini C, Carboni M, Basile I, Farruggia G, Bonafè F et al (2007) Different expression of NOS isoforms in early endothelial progenitor cells derived from peripheral and cord blood. J Cell Biochem 102:992–1001PubMedCrossRefGoogle Scholar
  56. 56.
    Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A et al (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238PubMedCrossRefGoogle Scholar
  57. 57.
    Li Calzi S, Neu MB, Shaw LC, Kielczewski JL, Moldovan NI, Grant MB (2010) EPCs and pathological angiogenesis: when good cells go bad. Microvasc Res 79:207–216PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thomas Ziebart
    • 1
    Email author
  • Anne Schnell
    • 1
  • Christian Walter
    • 1
  • Peer W. Kämmerer
    • 1
  • Andreas Pabst
    • 1
  • Karl M. Lehmann
    • 2
  • Johanna Ziebart
    • 2
  • Marc O. Klein
    • 1
  • Bilal Al-Nawas
    • 1
  1. 1.Department of Oral and Maxillofacial SurgeryUniversity medical centre of Johannes Gutenberg University MainzMainzGermany
  2. 2.Clinic of Prosthetic DentistryUniversity Medical Center of the Johannes Gutenberg-University of MainzMainzGermany

Personalised recommendations