Skip to main content

Advertisement

Log in

The original family revisited after 37 years: odontoma–dysphagia syndrome is most likely caused by a microduplication of chromosome 11q13.3, including the FGF3 and FGF4 genes

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Fibroblast growth factors consist of receptor tyrosine kinase binding proteins involved in growth, differentiation, and regeneration of a variety of tissues of the head and neck. Their role in the development of teeth has been documented, and their presence in human odontogenic cysts and tumors has previously been investigated. Odontoma–dysphagia syndrome (OMIM 164330) is a very rare disorder characterized by clustering of teeth as compound odontoma, dysplasia and aplasia of teeth, slight craniofacial abnormalities, and dysphagia. We have followed the clinical course of the disease in a family over more than 30 years and have identified a genetic abnormality segregating with the disorder.

Materials and methods

We evaluated clinical data from nine different family members and obtained venous blood probes for genetic studies from three family members (two affected and one unaffected).

Results

The present family with five patients in two generations has remained one out of only two known cases with this very rare syndrome. All those affected showed teeth dysplasia, oligodontia, and dysplasia and odontoma of the upper and lower jaw. Additional signs included dysphagia and strictures of the oesophagus. Comorbidity in one patient included aortic stenosis and coronary artery disease, requiring coronary bypasses and aortic valve replacement. Genome-wide SNP array analyses in three family members (two affected and one unaffected) revealed a microduplication of chromosome 11q13.3 spanning 355 kilobases (kb) and including two genes in full length, fibroblast growth factors 3 (FGF3) and 4 (FGF4).

Conclusion

The microduplication identified in this family represents the most likely cause of the odontoma–dysphagia syndrome and implies that the syndrome is caused by a gain of function of the FGF3 and FGF4 genes.

Clinical relevance

Mutations of FGF receptor genes can cause craniofacial syndromes such as odontoma–dysphagia syndrome. Following this train of thought, an evaluation of FGF gene family in sporadic odontoma could be worthwhile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glickman I, Wuehrmann AH (1946) Compound composite odontoma; case report and histologic study. Am J Orthod Oral Surg 32:173–181

    Article  PubMed  Google Scholar 

  2. Nelson BL, Thompson LD (2010) Compound odontoma. Head Neck Pathol 4(4):290–291

    Article  PubMed  Google Scholar 

  3. Schmidseder R, Hausamen JE (1973) Familiäres Auftreten angeborener, multipler Odontome. Dtsch Zahnärztl Z 28:628–632

    PubMed  Google Scholar 

  4. Bordini J Jr, Contar CM, Sarot JR, Fernandes A, Machado MA (2008) Multiple compound odontomas in the jaw: case report and analysis of the literature. J Oral Maxillofac Surg 66(12):2617–2620

    Article  PubMed  Google Scholar 

  5. Gardner EJ (1951) A genetic and clinical study of intestinal polyposis: a predisposing factor for carcinoma of the colon and rectum. Am J Hum Genet 3:167–176

    PubMed  Google Scholar 

  6. Fotiadis C, Tsekouras DK, Antonakis P, Sfiniadakis J, Genetzakis M, Zografos GC (2005) Gardner’s syndrome: a case report and review of the literature. World J Gastroenterol 11(34):5408–5411

    PubMed  Google Scholar 

  7. So F, Daley TD, Jackson L, Wysocki GP (2001) Immunohistochemical localization of fibroblast growth factors FGF-1 and FGF-2, and receptors FGFR2 and FGFR3 in the epithelium of human odontogenic cysts and tumors. J Oral Pathol Med 30(7):428–433

    Article  PubMed  Google Scholar 

  8. Ornitz DM (2005) FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16:205–213

    Article  PubMed  Google Scholar 

  9. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22:108–112

    Article  PubMed  Google Scholar 

  10. Pispa J, Jung H-S, Jernvall J et al (1999) Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Dev Biol 216:521–534

    Article  PubMed  Google Scholar 

  11. Klein S, Roghani M, Rifkin DB (1997) Fibroblast growth factors as angiogenesis factors: new insights into their mechanism of action. In: Goldberg ID, Rosen EM (eds) Regulation of angiogenesis. Birkhauser Verlag, Basel, pp 159–183

    Chapter  Google Scholar 

  12. Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211:256–268

    Article  PubMed  Google Scholar 

  13. Niswander L, Martin GR (1992) FGF-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768

    PubMed  Google Scholar 

  14. Jehee FS, Bertola DR, Yelavarthi KK, Krepischi-Santos AC, Kim C, Vianna-Morgante AM, Vermeesch JR, Passos-Bueno MR (2007) An 11q11–q13.3 duplication, including FGF3 and FGF4 genes, in a patient with syndromic multiple craniosynostoses. Am J Med Genet A 143A(16):1912–1918

    Article  PubMed  Google Scholar 

  15. Herrmann M (1957) Über vom Zahnsystem ausgehende Tumore bei Kindern. Fortschr Kiefer Gesichtschir 3:257

    Google Scholar 

  16. Herrmann M (1958) Über vom Zahnsystem ausgehende Tumore bei Kindern. Fortschr Kiefer Gesichtschir 3:257

    Google Scholar 

  17. Yamaguchi TP, Rossant J (1995) Fibroblast growth factors in mammalian development. Curr Opin Genet Dev 5(4):485–491

    Article  PubMed  Google Scholar 

  18. Wilkinson DG, Bhatt S, McMahon AP (1989) Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development. Development 105(1):131–136

    PubMed  Google Scholar 

  19. Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I (1994) Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 38(3):463–469

    PubMed  Google Scholar 

  20. Cohen MM Jr (1995) Craniosynostoses: phenotypic/molecular correlations. Am J Med Genet 56(3):334–339

    Article  PubMed  Google Scholar 

  21. Boder G (1967) Odontomatosis (multiple odontomas). Oral Surg 23:770–773

    Article  Google Scholar 

  22. Schonberger W (1974) Angeborene multiple Odontome und Dysphagie bei Vater und Sohn-eine syndromhafte Verknuepfung? Z Kinderheilk 117:101–108

    Article  PubMed  Google Scholar 

  23. Gregory-Evans CY, Moosajee M, Hodges MD, Mackay DS, Game L, Vargesson N, Bloch-Zupan A, Ruschendorf F, Santos-Pinto L, Wackens G, Gregory-Evans K (2007) SNP genome scanning localizes oto-dental syndrome to chromosome 11q13 and microdeletions at this locus implicate FGF3 in dental and inner-ear disease and FADD in ocular coloboma. Hum Mol Genet 16:2482–2493

    Article  PubMed  Google Scholar 

  24. Hillbertz NHCS, Isaksson M, Karlsson EK, Hellmen E, Pielberg GR, Savolainen P, Wade CM, von Euler H, Gustafson U, Hedhammar A, Nilsson M, Lindblad-Toh K, Andersson L, Andersson G (2007) Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. Nat Genet 39:1318–1320

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the family very much for their support of this study.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ziebart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziebart, T., Draenert, F.G., Galetzka, D. et al. The original family revisited after 37 years: odontoma–dysphagia syndrome is most likely caused by a microduplication of chromosome 11q13.3, including the FGF3 and FGF4 genes. Clin Oral Invest 17, 123–130 (2013). https://doi.org/10.1007/s00784-012-0676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0676-6

Keywords

Navigation