Advertisement

Clinical Oral Investigations

, Volume 16, Issue 1, pp 275–283 | Cite as

Anti-inflammatory effects of EMD in the presence of biomechanical loading and interleukin-1β in vitro

  • Marjan Nokhbehsaim
  • Birgit Deschner
  • Jochen Winter
  • Christoph Bourauel
  • Andreas Jäger
  • Søren Jepsen
  • James Deschner
Original Article

Abstract

Enamel matrix derivative (EMD) used to promote periodontal regeneration has been shown to exert anti-inflammatory effects. This in vitro study was performed to investigate if the anti-inflammatory actions of EMD are modulated by the local cellular environment, such as inflammation or occlusal, i.e., biomechanical, loading. Human periodontal ligament cells were seeded on BioFlex plates and incubated with EMD under normal, inflammatory, and biomechanical loading conditions for 1 and 6 days. In order to mimic inflammatory and biomechanical loading conditions in vitro, cells were stimulated with interleukin (IL)-1β and exposed to dynamic tensile strain, respectively. The gene expression of IL-1β, IL-1 receptor antagonist (IL-1RN), IL-6, IL-8, IL-10, and cyclooxygenase (COX)-2 was analyzed by real-time RT-PCR and the IL-6 protein synthesis by enzyme-linked immunoassay. For statistical analysis, Student's t test, ANOVA, and post-hoc comparison tests were applied (p < 0.05). EMD downregulated significantly the expression of IL-1β and COX-2 at 1 day and of IL-6, IL-8, and COX-2 at 6 days in normal condition. In an inflammatory environment, the anti-inflammatory actions of EMD were significantly enhanced at 6 days. In the presence of low biomechanical loading, EMD caused a downregulation of IL-1β and IL-8, whereas high biomechanical loading significantly abrogated the anti-inflammatory effects of EMD at both days. Neither IL-1RN nor IL-10 was upregulated by EMD. These data suggest that high occlusal forces may abrogate anti-inflammatory effects of EMD and should, therefore, be avoided immediately after the application of EMD to achieve best healing results.

Keywords

EMD Wound healing Biomechanical loading Inflammation Periodontium 

Notes

Acknowledgments

This study was supported by a grant from the German Research Foundation (Clinical Research Unit 208/TP4) and the Medical Faculty of the University of Bonn. We would like to thank Marcel Drolshagen, Katharina Reifenrath, and Susanne Reimann for their great support.

Conflicts of interest

EMD was provided by Straumann AG (Switzerland).

References

  1. 1.
    Graves DT, Cochran D (2003) The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol 74:391–401PubMedCrossRefGoogle Scholar
  2. 2.
    Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ (2007) Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. J Dent Res 86:306–319PubMedCrossRefGoogle Scholar
  3. 3.
    Noguchi K, Ishikawa I (2007) The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontol 2000 43:85–101PubMedCrossRefGoogle Scholar
  4. 4.
    Bartold PM, Cantley MD, Haynes DR (2010) Mechanisms and control of pathologic bone loss in periodontitis. Periodontol 2000 53:55–69PubMedCrossRefGoogle Scholar
  5. 5.
    Deschner J, Arnold B, Kage A, Zimmermann B, Kanitz V, Bernimoulin JP (2000) Suppression of interleukin-10 release from human periodontal ligament cells by interleukin-1beta in vitro. Arch Oral Biol 45:179–183PubMedCrossRefGoogle Scholar
  6. 6.
    Long P, Hu J, Piesco N, Buckley M, Agarwal S (2001) Low magnitude of tensile strain inhibits IL-1beta-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J Dent Res 80:1416–1420PubMedCrossRefGoogle Scholar
  7. 7.
    Garrett S (1996) Periodontal regeneration around natural teeth. Ann Periodontol 1:621–666PubMedCrossRefGoogle Scholar
  8. 8.
    Heitz-Mayfield L (2005) How effective is surgical therapy compared with nonsurgical debridement? Periodontology 2000 37:72–87PubMedCrossRefGoogle Scholar
  9. 9.
    Bosshardt DD (2008) Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 35(8 Suppl):87–105PubMedCrossRefGoogle Scholar
  10. 10.
    Cochran DL, King GN, Schoolfield J, Velasquez-Plata D, Mellonig JT, Jones A (2003) The effect of enamel matrix proteins on periodontal regeneration as determined by histological analyses. J Periodontol 74:1043–1055PubMedCrossRefGoogle Scholar
  11. 11.
    Giannobile W, Somerman M (2003) Growth and amelogenin-like factors in periodontal wound healing. A systematic review. Ann Periodontol 8:193–204PubMedCrossRefGoogle Scholar
  12. 12.
    Jepsen S, Heinz B, Jepsen K, Arjomand M, Hoffmann T, Richter S, Reich E, Sculean A, Gonzales JR, Bödeker RH, Meyle J (2004) A randomized clinical trial comparing enamel matrix derivative and membrane treatment of buccal Class II furcation involvement in mandibular molars. Part I: study design and results for primary outcomes. J Periodontol 75:1150–1160PubMedCrossRefGoogle Scholar
  13. 13.
    Venezia E, Goldstein M, Boyan B, Schwartz Z (2004) The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis. Crit Rev Oral Biol Med 15:382–402PubMedCrossRefGoogle Scholar
  14. 14.
    Esposito M, Grusovin MG, Papanikolaou N, Coulthard P, Worthington HV (2009) Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev (4):CD003875Google Scholar
  15. 15.
    Mirastschijski U, Konrad D, Lundberg E, Lyngstadaas SP, Jorgensen LN, Agren MS (2004) Effects of a topical enamel matrix derivative on skin wound healing. Wound Repair Regen 12:100–108PubMedCrossRefGoogle Scholar
  16. 16.
    Okuda K, Miyazaki A, Momose M, Murata M, Nomura T, Kubota T, Wolff LF, Yoshie H (2001) Levels of tissue inhibitor of metalloproteinases-1 and matrix metalloproteinases-1 and -8 in gingival crevicular fluid following treatment with enamel matrix derivative (EMDOGAIN). J Periodontal Res 36:309–316PubMedCrossRefGoogle Scholar
  17. 17.
    Tonetti MS, Fourmousis I, Suvan J, Cortellini P, Brägger U, Lang NP, European Research Group on Periodontology (ERGOPERIO) (2004) Healing, post-operative morbidity and patient perception of outcomes following regenerative therapy of deep intrabony defects. J Clin Periodontol 31:1092–1098PubMedCrossRefGoogle Scholar
  18. 18.
    Wennström JL, Lindhe J (2002) Some effects of enamel matrix proteins on wound healing in the dento-gingival region. J Clin Periodontol 29:9–14PubMedCrossRefGoogle Scholar
  19. 19.
    Aukhil I (2000) Biology of wound healing. Periodontol 2000 22:44–50PubMedCrossRefGoogle Scholar
  20. 20.
    Häkkinen L, Uitto VJ, Larjava H (2000) Cell biology of gingival wound healing. Periodontol 2000 24:127–152PubMedCrossRefGoogle Scholar
  21. 21.
    Parkar M, Tonetti M (2004) Gene expression profiles of periodontal ligament cells treated with enamel matrix proteins in vitro: analysis using cDNA arrays. J Periodontol 75:1539–1546PubMedCrossRefGoogle Scholar
  22. 22.
    Myhre AE, Lyngstadaas SP, Dahle MK, Stuestøl JF, Foster SJ, Thiemermann C, Lilleaasen P, Wang JE, Aasen AO (2006) Anti-inflammatory properties of enamel matrix derivative in human blood. J Periodontal Res 41:208–213PubMedCrossRefGoogle Scholar
  23. 23.
    Sato S, Kitagawa M, Sakamoto K, Iizuka S, Kudo Y, Ogawa I, Miyauchi M, Chu EY, Foster BL, Somerman MJ, Takata T (2008) Enamel matrix derivative exhibits anti-inflammatory properties in monocytes. J Periodontol 79:535–540PubMedCrossRefGoogle Scholar
  24. 24.
    Hönig J, Rordorf-Adam C, Siegmund C, Wiedemann W, Erard F (1989) Increased interleukin-1 beta (IL-1 beta) concentration in gingival tissue from periodontitis patients. J Periodontal Res 24:362–367PubMedCrossRefGoogle Scholar
  25. 25.
    Hou L, Liu C, Chang W (1994) Increased interleukin-1 beta levels in gingival crevicular fluid of Chinese periodontal patients. J Formos Med Assoc 93:99–103PubMedGoogle Scholar
  26. 26.
    Mathur A, Michalowicz B, Castillo M, Aeppli D (1996) Interleukin-1 alpha, interleukin-8 and interferon-alpha levels in gingival crevicular fluid. J Periodontal Res 31:489–495PubMedCrossRefGoogle Scholar
  27. 27.
    Preiss D, Meyle J (1994) Interleukin-1 beta concentration of gingival crevicular fluid. J Periodontol 65:423–428PubMedGoogle Scholar
  28. 28.
    Deschner J, Rath-Deschner B, Reimann S, Bourauel C, Götz W, Jepsen S, Jäger A (2007) Regulatory effects of biophysical strain on rat TMJ discs. Ann Anat 189:326–328PubMedCrossRefGoogle Scholar
  29. 29.
    Rath-Deschner B, Deschner J, Reimann S, Bourauel C, Jäger A, Götz W (2009) Regulatory effects of biomechanical strain on the IGF system in human periodontal cells. J Biomech 42:2584–2589PubMedCrossRefGoogle Scholar
  30. 30.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  31. 31.
    Harrel SK, Nunn ME, Hallmon WW (2006) Is there an association between occlusion and periodontal destruction?: yes—occlusal forces can contribute to periodontal destruction. JADA 137:1380–1392PubMedGoogle Scholar
  32. 32.
    Harrel SK, Nunn ME (2001) The effect of occlusal discrepancies on periodontitis. II. Relationship of occlusal treatment to the progression of periodontal disease. J Periodontol 72:495–505PubMedCrossRefGoogle Scholar
  33. 33.
    Hoang AM, Oates TW, Cochran DL (2000) In vitro wound healing responses to enamel matrix derivative. J Periodontol 71:1270–1277PubMedCrossRefGoogle Scholar
  34. 34.
    Rincon J, Haase H, Bartold P (2003) Effect of Emdogain on human periodontal fibroblasts in an in vitro wound-healing model. J Periodontal Res 38:290–295PubMedCrossRefGoogle Scholar
  35. 35.
    Schwarz F, Rothamel D, Herten M, Sculean A, Scherbaum W, Becker J (2004) Effect of enamel matrix protein derivative on the attachment, proliferation, and viability of human SaOs(2) osteoblasts on titanium implants. Clin Oral Investig 8:165–171PubMedCrossRefGoogle Scholar
  36. 36.
    Takayama T, Suzuki N, Narukawa M, Tokunaga T, Otsuka K, Ito K (2005) Enamel matrix derivative stimulates core binding factor alpha1/Runt-related transcription factor-2 expression via activation of Smad1 in C2C12 cells. J Periodontol 76:244–249PubMedCrossRefGoogle Scholar
  37. 37.
    Zeldich E, Koren R, Nemcovsky C, Weinreb M (2007) Enamel matrix derivative stimulates human gingival fibroblast proliferation via ERK. J Dent Res 86:41–46PubMedCrossRefGoogle Scholar
  38. 38.
    Agarwal S, Long P, Seyedain A, Piesco N, Shree A, Gassner R (2003) A central role for the nuclear factor-kappaB pathway in anti-inflammatory and proinflammatory actions of mechanical strain. FASEB J 17:899–901PubMedGoogle Scholar
  39. 39.
    Johnson DL, Carnes D, Steffensen B, Cochran DL (2009) Cellular effects of enamel matrix derivative are associated with different molecular weight fractions following separation by size-exclusion chromatography. J Periodontol 80:648–656PubMedCrossRefGoogle Scholar
  40. 40.
    Suzuki S, Nagano T, Yamakoshi Y, Gomi K, Arai T, Fukae M, Katagiri T, Oida S (2005) Enamel matrix derivative gel stimulates signal transduction of BMP and TGF-{beta}. J Dent Res 84:510–514PubMedCrossRefGoogle Scholar
  41. 41.
    Okubo K, Kobayashi M, Takiguchi T, Takada T, Ohazama A, Okamatsu Y, Hasegawa K (2003) Participation of endogenous IGF-I and TGF-beta 1 with enamel matrix derivative-stimulated cell growth in human periodontal ligament cells. J Periodontal Res 38:1–9PubMedCrossRefGoogle Scholar
  42. 42.
    Hirano T (2010) Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proc Jpn Acad B Phys Biol Sci 86:717–730CrossRefGoogle Scholar
  43. 43.
    Blanchard F, Duplomb L, Baud’huin M, Brounais B (2009) The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev 20:19–28PubMedCrossRefGoogle Scholar
  44. 44.
    Gaffen SL, Hajishengallis G (2008) A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res 87:817–828PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marjan Nokhbehsaim
    • 1
    • 2
  • Birgit Deschner
    • 1
    • 3
  • Jochen Winter
    • 2
  • Christoph Bourauel
    • 1
    • 4
  • Andreas Jäger
    • 1
    • 3
  • Søren Jepsen
    • 1
    • 2
  • James Deschner
    • 1
    • 2
  1. 1.Clinical Research Unit 208, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany
  2. 2.Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany
  3. 3.Department of Orthodontics, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany
  4. 4.Oral Technology, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany

Personalised recommendations