Finance and Stochastics

, Volume 22, Issue 2, pp 327–366 | Cite as

Approximation of forward curve models in commodity markets with arbitrage-free finite-dimensional models

Article
  • 74 Downloads

Abstract

In this paper, we show how to approximate Heath–Jarrow–Morton dynamics for the forward prices in commodity markets with arbitrage-free models which have a finite-dimensional state space. Moreover, we recover a closed-form representation of the forward price dynamics in the approximation models and derive the rate of convergence to the true dynamics uniformly over an interval of time to maturity under certain additional smoothness conditions. In the Markovian case, we can strengthen the convergence to be uniform over time as well. Our results are based on the construction of a convenient Riesz basis on the state space of the term structure dynamics.

Keywords

Energy markets Heath–Jarrow–Morton modelling Nonharmonic Fourier analysis Arbitrage-free approximations 

Mathematics Subject Classification (2010)

60H15 91B24 91G20 

JEL Classification

C02 C63 G13 

Notes

Acknowledgements

An anonymous referee and the Associate Editor are thanked for their constructive criticisms.

References

  1. 1.
    Albeverio, S., Ferrario, B.: Some methods of infinite dimensional analysis in hydrodynamics: an introduction. In: da Prato, G., Röckner, M. (eds.) SPDE in Hydrodynamics: Recent Progress and Prospects. Lecture Notes in Math., vol. 1942, pp. 1–50. Springer, Berlin (2005) Google Scholar
  2. 2.
    Barth, A.: A finite element method for martingale-driven stochastic partial differential equations. Commun. Stoch. Anal. 4, 355–373 (2010) MathSciNetMATHGoogle Scholar
  3. 3.
    Benth, F.E., Kallsen, J., Meyer-Brandis, T.: A non-Gaussian Ornstein–Uhlenbeck process for electricity spot price modeling and derivatives pricing. Appl. Math. Finance 14, 153–169 (2007) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Benth, F.E., Krühner, P.: Representation of infinite-dimensional forward price models in commodity markets. Commun. Math. Stat. 2, 47–106 (2014) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Benth, F.E., Krühner, P.: Subordination of Hilbert space valued Lévy processes. Stochastics 87, 458–476 (2015) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Benth, F.E., Krühner, P.: Derivatives pricing in energy markets: an infinite-dimensional approach. SIAM J. Financ. Math. 6, 825–869 (2015) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Benth, F.E., Lempa, J.: Optimal portfolios in commodity markets. Finance Stoch. 18, 407–430 (2014) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benth, F.E., Šaltytė Benth, J.: Modeling and Pricing in Financial Markets for Weather Derivatives. World Scientific, Singapore (2013) MATHGoogle Scholar
  9. 9.
    Benth, F.E., Šaltytė Benth, J., Koekebakker, S.: Stochastic Modelling of Electricity and Related Markets. World Scientific, Singapore (2008) CrossRefMATHGoogle Scholar
  10. 10.
    Björk, T.: On the existence of finite-dimensional realizations for nonlinear forward rate models. Math. Finance 11, 205–243 (2001) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Björk, T., Landén, C.: On the construction of finite dimensional realizations for nonlinear forward rate models. Finance Stoch. 6, 303–331 (2002) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Björk, T., Svensson, L.: On the existence of finite-dimensional realizations for nonlinear forward rate models. Math. Finance 11, 205–243 (2001) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Carmona, R., Tehranchi, M.: Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Berlin (2006) MATHGoogle Scholar
  14. 14.
    Clewlow, L., Strickland, C.: Energy Derivatives: Pricing and Risk Management. Lacima Publications, London (2000) Google Scholar
  15. 15.
    Cuchiero, C., Klein, I., Teichmann, J.: A new perspective on the fundamental theorem of asset pricing for large financial markets. Theory Probab. Appl. 60, 561–579 (2016) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dinculeanu, N.: Vector Integration and Stochastic Integration in Banach Spaces. Wiley, New York (2000) CrossRefMATHGoogle Scholar
  18. 18.
    Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications to finance. Ann. Appl. Probab. 13, 984–1053 (2003) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Filipović, D.: Invariant manifolds for weak solutions to stochastic equations. Probab. Theory Relat. Fields 118, 323–341 (2000) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Filipović, D.: Consistency Problems for Heath–Jarrow–Morton Interest Rate Models. Lecture Notes in Mathematics, vol. 1760. Springer, Berlin (2001) CrossRefMATHGoogle Scholar
  21. 21.
    Filipović, D., Tappe, S., Teichmann, J.: Jump-diffusions in Hilbert spaces: existence, stability and numerics. Stochastics 82, 475–520 (2010) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Filipović, D., Teichmann, J.: Existence of invariant manifolds for stochastic equations in infinite dimension. J. Funct. Anal. 197, 398–432 (2003) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Grecksch, W., Kloeden, P.E.: Time-discretised Galerkin approximations of parabolic stochastic PDEs. Bull. Aust. Math. Soc. 54, 79–85 (1996) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claim valuation. Econometrica 60, 77–105 (1992) CrossRefMATHGoogle Scholar
  25. 25.
    Henseler, M., Christoph, C., Seydel, R.C.: A tractable multi-factor dynamic term-structure model for risk management. Working paper (2015), available online at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2225738
  26. 26.
    Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34, 217–251 (2011) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kruse, R.: Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes in Mathematics, vol. 2093. Springer, Berlin (2014) MATHGoogle Scholar
  28. 28.
    Mishura, Y., Munchak, E.: Rate of convergence of option prices by using the method of pseudomoments. Theory Probab. Math. Stat. 92, 117–133 (2016) CrossRefMATHGoogle Scholar
  29. 29.
    Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press, Cambridge (2007) CrossRefMATHGoogle Scholar
  30. 30.
    Platen, E., Bruti-Liberati, N.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer, Berlin (2010) CrossRefMATHGoogle Scholar
  31. 31.
    Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007) MATHGoogle Scholar
  32. 32.
    Szőkefalvi-Nagy, B., Foiaş, C.: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam (1970) MATHGoogle Scholar
  33. 33.
    Tappe, S.: An alternative approach on the existence of affine realizations for HJM term structure models. Proc. R. Soc. Lond. Ser. A 466, 3033–3060 (2010) MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Tappe, S.: Some refinements of existence results for SPDEs driven by Wiener processes and Poisson random measures. Int. J. Stoch. Anal. 2012, 236327 (2012) MathSciNetMATHGoogle Scholar
  35. 35.
    Young, R.: An Introduction to Nonharmonic Fourier Series. Academic Press, London (1980) MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OsloOsloNorway
  2. 2.Institute for Financial and Actuarial MathematicsThe University of LiverpoolLiverpoolUK

Personalised recommendations