Finance and Stochastics

, Volume 21, Issue 1, pp 111–155 | Cite as

Arbitrage-free pricing of multi-person game claims in discrete time

  • Ivan Guo
  • Marek RutkowskiEmail author


We introduce a class of financial contracts involving several parties by extending the notion of a two-person game option to a contract in which an arbitrary number of parties is involved and each of them is allowed to make a wide array of decisions at any time, not restricted to simply exercising the option. The collection of decisions by all parties then determines the contract’s termination date as well as the terminal payoff for each party. We provide sufficient conditions under which a discrete-time multi-person game option has a unique arbitrage-free price, which is additive with respect to any partition of the contract. Our results are illustrated by the detailed study of a particular multi-person contract with puttable tranches.


Multi-person games Arbitrage-free pricing Optimal equilibrium 

Mathematics Subject Classification (2010)

60G35 91G20 91G80 

JEL Classification



  1. 1.
    Andersen, L., Buffum, L.: Calibration and implementation of convertible bond models. J. Comput. Finance 7, 1–34 (2004) CrossRefGoogle Scholar
  2. 2.
    Ayache, E., Forsyth, P., Vetzal, K.: Valuation of convertible bonds with credit risk. J. Deriv. 11, 9–29 (2003) CrossRefGoogle Scholar
  3. 3.
    Bielecki, T.R., Rutkowski, M.: Valuation and hedging of contracts with funding costs and collateralization. SIAM J. Financ. Math. 6, 594–655 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bielecki, T.R., Crépey, S., Jeanblanc, M., Rutkowski, M.: Arbitrage pricing of defaultable game options with applications to convertible bonds. Quant. Finance 8, 795–810 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cvitanić, J., Karatzas, I.: Backward stochastic differential equations with reflection and Dynkin games. Ann. Probab. 24, 2024–2056 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dolinsky, Y., Kifer, Y.: Hedging with risk for game options in discrete time. Stoch. Int. J. Probab. Stoch. Process. 79, 169–195 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dolinsky, Y., Iron, Y., Kifer, Y.: Perfect and partial hedging for swing game options in discrete time. Math. Finance 21, 447–474 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dynkin, E.B.: Game variant of a problem on optimal stopping. Sov. Math. Dokl. 10, 270–274 (1969) zbMATHGoogle Scholar
  9. 9.
    Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 2nd edn. De Gruyter, Berlin (2004) CrossRefzbMATHGoogle Scholar
  10. 10.
    Guo, I.: Competitive multi-player stochastic games with applications to multi-person financial contracts. Doctoral dissertation, University of Sydney (2013). Available online at
  11. 11.
    Guo, I., Rutkowski, M.: A zero-sum competitive multi-player game. Demonstr. Math. 45, 415–433 (2012) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Guo, I., Rutkowski, M.: Discrete-time multi-player stopping and quitting games with redistribution of payoffs. In: Hillairet, C., et al. (eds.) Arbitrage, Credit and Informational Risks, pp. 171–206. World Scientific, Singapore (2014) CrossRefGoogle Scholar
  13. 13.
    Guo, I., Rutkowski, M.: Discrete time stochastic multi-player competitive games with affine payoffs. Stoch. Process. Appl. 126, 1–32 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hamadène, S., Hassani, M.: The multi-player nonzero-sum Dynkin game in discrete time. Math. Methods Oper. Res. 79, 179–194 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hamadène, S., Zhang, J.: The continuous time nonzero-sum Dynkin game problem and application in game options. SIAM J. Control Optim. 48, 3659–3669 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kallsen, J., Kühn, C.: Pricing derivatives of American and game type in incomplete markets. Finance Stoch. 8, 261–284 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kallsen, J., Kühn, C.: Convertible bonds: financial derivatives of game type. In: Kyprianou, A., et al. (eds.) Exotic Option Pricing and Advanced Lévy Models, pp. 277–291. Wiley, New York (2005) Google Scholar
  18. 18.
    Karatzas, I., Li, Q.: BSDE approach to non-zero-sum differential games of control and stopping. In: Cohen, S.N., et al. (eds.) Stochastic Processes, Finance and Control. A Festschrift in Honor of R.J. Elliott. Advances in Statistics, Probability and Actuarial Science, vol. 1, pp. 105–153 (2012) CrossRefGoogle Scholar
  19. 19.
    Kifer, Y.: Game options. Finance Stoch. 4, 443–463 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kifer, Y.: Dynkin’s games and Israeli options. ISRN Probab. Stat., Article ID 856458 (2013). doi: 10.1155/2013/856458
  21. 21.
    Kühn, C., Kyprianou, A.E., van Schaik, K.: Pricing Israeli options: a pathwise approach. Stoch. Int. J. Probab. Stoch. Process. 79, 117–137 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kyprianou, A.E.: Some calculations for Israeli options. Finance Stoch. 8, 73–86 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Laraki, R., Solan, E.: Equilibrium in two-player non-zero-sum Dynkin games in continuous time. Stoch. Int. J. Probab. Stoch. Process. 85, 997–1014 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Neveu, J.: Discrete-Parameter Martingales. North-Holland, Amsterdam (1975) zbMATHGoogle Scholar
  25. 25.
    Nie, T., Rutkowski, M.: Multi-player stopping games with redistribution of payoffs and BSDEs with oblique reflection. Stoch. Process. Appl. 124, 2672–2698 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ohtsubo, Y.: A nonzero-sum extension of Dynkin’s stopping problem. Math. Oper. Res. 12, 277–296 (1987) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Peskir, G.: Optimal stopping games and Nash equilibrium. Theory Probab. Appl. 53, 623–638 (2008) MathSciNetGoogle Scholar
  28. 28.
    Snell, J.L.: Applications of martingale system theorems. Trans. Am. Math. Soc. 73, 293–312 (1952) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mathematical SciencesMonash UniversityMelbourneAustralia
  2. 2.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia
  3. 3.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations