Finance and Stochastics

, Volume 19, Issue 4, pp 743–761 | Cite as

A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing

  • Christa CuchieroEmail author
  • Josef Teichmann


We show that no unbounded profit with bounded risk (NUPBR) implies predictable uniform tightness (P-UT), a boundedness property in the Emery topology introduced by Stricker (Séminaire de Probabilités de Strasbourg XIX, pp. 209–217, 1985). Combining this insight with well-known results of Mémin and Słominski (Séminaire de Probabilités de Strasbourg XXV, pp. 162–177, 1991) leads to a short variant of the proof of the fundamental theorem of asset pricing initially proved by Delbaen and Schachermayer (Math. Ann. 300:463–520, 1994). The results are formulated in the general setting of admissible portfolio wealth processes as laid down by Kabanov (Statistics and Control of Stochastic Processes, pp. 191–203, World Sci. Publ., River Edge, 1997).


Fundamental theorem of asset pricing Emery topology (NUPBR) condition (P-UT) property 

Mathematics Subject Classification

60G48 91B70 91G99 

JEL Classification



  1. 1.
    Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973) CrossRefzbMATHGoogle Scholar
  2. 2.
    Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. Stoch. Rep. 29, 185–201 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Delbaen, F.: Representing martingale measures when asset prices are continuous and bounded. Math. Finance 2, 107–130 (1992) CrossRefzbMATHGoogle Scholar
  4. 4.
    Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Delbaen, F., Schachermayer, W.: The no-arbitrage property under a change of numéraire. Stoch. Stoch. Rep. 53, 213–226 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, Berlin (2006) zbMATHGoogle Scholar
  8. 8.
    Emery, M.: Une topologie sur l’espace des semimartingales. In: Emery, M., Yor, M. (eds.) Séminaire de Probabilités, XIII, Univ. Strasbourg, Strasbourg, 1977/78. Lecture Notes in Math., vol. 721, pp. 260–280. Springer, Berlin (1979) CrossRefGoogle Scholar
  9. 9.
    Fernholz, R., Karatzas, I.: Stochastic portfolio theory: an overview. In: Bensoussan, A., et al. (eds.) Handbook of Numerical Analysis, vol. XV, pp. 89–167. North-Holland, Amsterdam (2009). Special Volume: Mathematical Modeling and Numerical Methods in Finance Google Scholar
  10. 10.
    Gushchin, A.A.: On taking limits under the compensator sign. In: Ibragimov, I.A., et al. (eds.) Probability Theory and Mathematical Statistics, St. Petersburg, 1993, pp. 185–192. Gordon and Breach, Amsterdam (1996) Google Scholar
  11. 11.
    Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Imkeller, P., Perkowski, N.: The existence of dominating local martingale measures. Finance Stoch. 685–717 (2015, this issue). doi: 10.1007/s00780-015-0264-0
  14. 14.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003) CrossRefzbMATHGoogle Scholar
  15. 15.
    Jakubowski, A., Mémin, J., Pagès, G.: Convergence en loi des suites d’intégrales stochastiques sur l’espace \(\mathbf{D}^{1}\) de Skorokhod. Probab. Theory Relat. Fields 81, 111–137 (1989) CrossRefzbMATHGoogle Scholar
  16. 16.
    Kabanov, Y.M.: On the FTAP of Kreps–Delbaen–Schachermayer. In: Kabanov, Y., Rozovski, B., Shiryaev, A. (eds.) Statistics and Control of Stochastic Processes, Moscow, 1995/1996, pp. 191–203. World Sci. Publ., River Edge (1997) Google Scholar
  17. 17.
    Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kardaras, C.: A structural characterization of numéraires of convex sets of nonnegative random variables. Positivity 16, 245–253 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kardaras, C.: Generalized supermartingale deflators under limited information. Math. Finance 23, 186–197 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kardaras, C.: On the closure in the Emery topology of semimartingale wealth-process sets. Ann. Appl. Probab. 23, 1355–1376 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kreps, D.M.: Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kurtz, T.G., Protter, P.: Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19, 1035–1070 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kurtz, T.G., Protter, P.E.: Weak convergence of stochastic integrals and differential equations. In: Talay, D., Tubaro, L. (eds.) Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995. Lecture Notes in Math., vol. 1627, pp. 1–41. Springer, Berlin (1996) CrossRefGoogle Scholar
  24. 24.
    Mémin, J.: Espaces de semi martingales et changements de probabilité. Z. Wahrscheinlichkeitstheor. Verw. Geb. 52, 9–39 (1980) CrossRefzbMATHGoogle Scholar
  25. 25.
    Mémin, J., Słominski, L.: Condition UT et stabilité en loi des solutions d’équations différentielles stochastiques. In: Azéma, J., Yor, M., Meyer, P.-A. (eds.) Séminaire de Probabilités de Strasbourg XXV. Lecture Notes in Math., vol. 1485, pp. 162–177 (1991) CrossRefGoogle Scholar
  26. 26.
    Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Meyer, P.-A.: Martingales and stochastic integrals. I. In: Dold, A., Eckmann, B. (eds.) Lecture Notes in Math., vol. 284. Springer, Berlin (1972) Google Scholar
  28. 28.
    Rokhlin, D.B.: On the existence of an equivalent supermartingale density for a fork-convex family of random processes. Mat. Zametki 87, 594–603 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ross, S.A.: A simple approach to the valuation of risky streams. J. Bus. 51, 453–475 (1978) CrossRefGoogle Scholar
  30. 30.
    Schachermayer, W.: Martingale measures for discrete-time processes with infinite horizon. Math. Finance 4, 25–55 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schachermayer, W.: Fundamental theorem of asset pricing. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance, pp. 792–801. Wiley, New York (2010) Google Scholar
  32. 32.
    Stricker, C.: Lois de semimartingales et critères de compacité. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités de Strasbourg XIX. Lecture Notes in Math., vol. 1123, pp. 209–217 (1985) Google Scholar
  33. 33.
    Stricker, C.: Arbitrage et lois de martingale. Ann. Inst. Henri Poincaré Probab. Stat. 26, 451–460 (1990) MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yan, J.A.: Caractérisation d’une classe d’ensembles convexes de \(L^{1}\) ou \(H^{1}\). In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIV, Paris, 1978/1979. Lecture Notes in Math., vol. 784, pp. 220–222. Springer, Berlin (1980) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of ViennaViennaAustria
  2. 2.ETH ZürichZürichSwitzerland

Personalised recommendations