Finance and Stochastics

, Volume 19, Issue 4, pp 685–717 | Cite as

The existence of dominating local martingale measures

  • Peter ImkellerEmail author
  • Nicolas Perkowski


We prove that for locally bounded processes the absence of arbitrage opportunities of the first kind is equivalent to the existence of a dominating local martingale measure. This is related to and motivated by results from the theory of filtration enlargements.


Dominating local martingale measure Arbitrage of the first kind Fundamental theorem of asset pricing Supermartingale densities Föllmer’s measure Enlargement of filtration Jacod’s criterion 

Mathematics Subject Classification

60G44 60G48 91B70 46N10 

JEL Classification




We wish to express our gratitude to the anonymous referees for their careful reading of the manuscript and for their detailed comments which helped to correct a mistake in Sect. 5 and to improve the presentation. N.P. thanks Asgar Jamneshan for the introduction to filtration enlargements. We are grateful to Stefan Ankirchner, Kostas Kardaras and Johannes Ruf for their helpful comments on earlier versions of this paper. We thank Alexander Gushchin for pointing out the reference [45]. Part of the research was carried out during a 2011 visit at the University of Illinois at Urbana-Champaign. We are grateful for the hospitality at UIUC.


  1. 1.
    Acciaio, B., Fontana, C., Kardaras, C.: Arbitrage of the first kind and filtration enlargements in semimartingale financial models (2014). arXiv preprint arXiv:1401.7198
  2. 2.
    Aksamit, A., Choulli, T., Deng, J., Jeanblanc, M.: Arbitrages in a progressive enlargement setting (2013). arXiv preprint arXiv:1312.2433
  3. 3.
    Amendinger, J., Imkeller, P., Schweizer, M.: Additional logarithmic utility of an insider. Stoch. Process. Appl. 75, 263–286 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amendinger, J.: Martingale representation theorems for initially enlarged filtrations. Stoch. Process. Appl. 89, 101–116 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ankirchner, S.: Information and semimartingales. Ph.D. thesis, Humboldt-Universität zu Berlin (2005). Available online
  6. 6.
    Ankirchner, S., Dereich, S., Imkeller, P.: The Shannon information of filtrations and the additional logarithmic utility of insiders. Ann. Probab. 34, 743–778 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ankirchner, S., Dereich, S., Imkeller, P.: Enlargement of filtrations and continuous Girsanov-type embeddings. In: Donati-Martin, C., et al. (eds.) Séminaire de Probabilités XL. Lecture Notes in Math., vol. 1899, pp. 389–410. Springer, Berlin (2007) CrossRefGoogle Scholar
  8. 8.
    Becherer, D.: The numeraire portfolio for unbounded semimartingales. Finance Stoch. 5, 327–341 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brannath, W., Schachermayer, W.: A bipolar theorem for \(L^{0}_{+}(\varOmega, \mathcal{F},\mathbb{P})\). In: Azéma, J., et al. (eds.) Séminaire de Probabilités, XXXIII. Lecture Notes in Math., vol. 1709, pp. 349–354. Springer, Berlin (1999) CrossRefGoogle Scholar
  10. 10.
    Carr, P., Fisher, T., Ruf, J.: On the hedging of options on exploding exchange rates. Finance Stoch. 18, 115–144 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cvitanić, J., Schachermayer, W., Wang, H.: Utility maximization in incomplete markets with random endowment. Finance Stoch. 5, 259–272 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Delbaen, F., Schachermayer, W.: Arbitrage possibilities in Bessel processes and their relations to local martingales. Probab. Theory Relat. Fields 102, 357–366 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Delbaen, F., Schachermayer, W.: The existence of absolutely continuous local martingale measures. Ann. Appl. Probab. 5, 926–945 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dellacherie, C.: Ensembles aléatoires. I. In: Meyer, P.-A. (ed.) Séminaire de Probabilités, III, Univ. Strasbourg, 1967/68. Lecture Notes in Math., vol. 88, pp. 97–114. Springer, Berlin (1969) Google Scholar
  16. 16.
    Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B: Theory of Martingales. North-Holland Mathematics Studies, vol. 72. North-Holland, Amsterdam (1982) zbMATHGoogle Scholar
  17. 17.
    Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986) CrossRefzbMATHGoogle Scholar
  18. 18.
    Föllmer, H.: The exit measure of a supermartingale. Probab. Theory Relat. Fields 21, 154–166 (1972) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Föllmer, H., Gundel, A.: Robust projections in the class of martingale measures. Ill. J. Math. 50, 439–472 (2006) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Föllmer, H., Imkeller, P.: Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré Probab. Stat. 29, 569–586 (1993) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Föllmer, H., Kramkov, D.: Optional decompositions under constraints. Probab. Theory Relat. Fields 109, 1–25 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Imkeller, P., Pontier, M., Weisz, F.: Free lunch and arbitrage possibilities in a financial market model with an insider. Stoch. Process. Appl. 92, 103–130 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1979) zbMATHGoogle Scholar
  26. 26.
    Jacod, J.: Grossissement initial, hypothèse (H ′) et théorème de Girsanov. In: Jeulin, Th., Yor, M. (eds.) Grossissements de Filtrations: Exemples et Applications. Lecture Notes in Mathematics, vol. 1118, pp. 15–35. Springer, Berlin (1985) CrossRefGoogle Scholar
  27. 27.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003) CrossRefzbMATHGoogle Scholar
  28. 28.
    Jarrow, R.A., Protter, P., Shimbo, K.: Asset price bubbles in incomplete markets. Math. Finance 20, 145–185 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.-L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Karatzas, I., Žitković, G.: Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab. 31, 1821–1858 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kardaras, C.: Finitely additive probabilities and the fundamental theorem of asset pricing. In: Chiarella, C., Novikov, A. (eds.) Contemporary Quantitative Finance. Essays in Honour of Eckhard Platen, pp. 19–34. Springer, Berlin (2010) CrossRefGoogle Scholar
  33. 33.
    Kardaras, C.: Market viability via absence of arbitrage of the first kind. Finance Stoch. 16, 651–667 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kardaras, C., Kreher, D., Nikeghbali, A.: Strict local martingales and bubbles. Ann. Appl. Probab. (2015, to appear). arXiv preprint arXiv:1108.4177. doi: 10.1214/14-AAP1037
  35. 35.
    Kardaras, C., Platen, E.: On the semimartingale property of discounted asset-price processes. Stoch. Process. Appl. 121, 2678–2691 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kunita, H.: Absolute continuity of Markov processes. In: Meyer, P.-A. (ed.) Séminaire de Probabilités X. Lecture Notes in Mathematics, vol. 511, pp. 44–77. Springer, Berlin (1976) Google Scholar
  38. 38.
    Larsen, K., Žitković, G.: Stability of utility-maximization in incomplete markets. Stoch. Process. Appl. 117, 1642–1662 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Loewenstein, M., Willard, G.A.: Local martingales, arbitrage, and viability—free snacks and cheap thrills. Econom. Theory 161, 135–161 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Pal, S., Protter, P.: Analysis of continuous strict local martingales via h-transforms. Stoch. Process. Appl. 120, 1424–1443 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Parthasarathy, K.R.: Probability Measures on Metric Spaces. Probability and Mathematical Statistics, vol. 3. Academic Press, New York (1967) zbMATHGoogle Scholar
  42. 42.
    Perkowski, N.: Studies of robustness in stochastic analysis and mathematical finance. Ph.D. thesis, Humboldt-Universität zu Berlin (2014). Available online
  43. 43.
    Perkowski, N., Ruf, J.: Supermartingales as Radon–Nikodým densities and related measure extensions. Ann. Probab. (2015, to appear). arXiv preprint arXiv:1309.4623
  44. 44.
    Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004) zbMATHGoogle Scholar
  45. 45.
    Rokhlin, D.B.: On the existence of an equivalent supermartingale density for a fork-convex family of random processes. Math. Notes 87, 556–563 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Ross, S.A.: A simple approach to the valuation of risky streams. J. Bus. 51, 453–475 (1978) CrossRefGoogle Scholar
  47. 47.
    Ruf, J.: Hedging under arbitrage. Math. Finance 23, 297–317 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Schweizer, M.: On the minimal martingale measure and the Föllmer–Schweizer decomposition. Stoch. Anal. Appl. 13, 573–599 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Song, S.: An alternative proof of a result of Takaoka (2013). arXiv preprint arXiv:1306.1062
  50. 50.
    Takaoka, K., Schweizer, M.: On the condition of no unbounded profit with bounded risk. Finance Stoch. 18, 393–405 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    von Weizsäcker, H., Winkler, G.: Stochastic Integrals: An Introduction. Vieweg, Wiesbaden (1990) CrossRefzbMATHGoogle Scholar
  52. 52.
    Yan, J.-A.: Caractérisation d’une classe d’ensembles convexes de \(L^{1}\) ou \(H^{1}\). In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIV. Lecture Notes in Mathematics, vol. 784, pp. 220–222. Springer, Berlin (1980) Google Scholar
  53. 53.
    Chantha, Y.: Théorème de Girsanov généralisé et grossissement d’une filtration. In: Jeulin, Th., Yor, M. (eds.) Grossissements de Filtrations: Exemples et Applications. Lecture Notes in Mathematics, vol. 1118, pp. 172–196. Springer, Berlin (1985) CrossRefGoogle Scholar
  54. 54.
    Yor, M., Meyer, P.-A.: Sur l’extension d’un théorème de Doob à un noyau \(\sigma\)-fini d’après G. Mokobodzki. In: Dellacherie, C., et al. (eds.) Séminaire de Probabilités, XII, Univ. Strasbourg, 1976/1977. Lecture Notes in Math., vol. 649, pp. 482–488. Springer, Berlin (1978) CrossRefGoogle Scholar
  55. 55.
    Žitković, G.: A filtered version of the bipolar theorem of Brannath and Schachermayer. J. Theor. Probab. 15, 41–61 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Žitković, G.: Convex compactness and its applications. Math. Financ. Econ. 3, 1–12 (2010) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations