Advertisement

Finance and Stochastics

, Volume 19, Issue 1, pp 67–107 | Cite as

Multi-portfolio time consistency for set-valued convex and coherent risk measures

  • Zachary Feinstein
  • Birgit Rudloff
Article

Abstract

Equivalent characterizations of multi-portfolio time consistency are deduced for closed convex and coherent set-valued risk measures on \(L^{p}({\varOmega,\mathcal{F},\mathbb{P}; \mathbb{R}^{d}})\) with image space in the power set of \(L^{p}({\varOmega,\mathcal{F}_{t},\mathbb{P}; \mathbb{R}^{d}})\). In the convex case, multi-portfolio time consistency is equivalent to a cocycle condition on the sum of minimal penalty functions. In the coherent case, multi-portfolio time consistency is equivalent to a generalized version of stability of the dual variables. As examples, the set-valued entropic risk measure with constant risk aversion coefficient is shown to satisfy the cocycle condition for its minimal penalty functions; the set of superhedging portfolios is shown to have in markets with proportional transaction costs the stability property and to satisfy in markets with convex transaction costs the composed cocycle condition; and a multi-portfolio time-consistent version of the set-valued average value at risk, the composed AV@R, is given, and its dual representation deduced.

Keywords

Dynamic risk measures Transaction costs Set-valued risk measures Time consistency Multi-portfolio time consistency Stability 

Mathematics Subject Classification (2010)

91B30 46A20 46N10 26E25 

JEL Classification

G32 C61 G15 G28 

References

  1. 1.
    Acciaio, B., Penner, I.: Dynamic risk measures. In: Di Nunno, G., Øksendal, B. (eds.) Advanced Mathematical Methods for Finance, pp. 1–34. Springer, Berlin (2011) CrossRefGoogle Scholar
  2. 2.
    Ararat, C., Hamel, A.H., Rudloff, B.: Set-valued shortfall and divergence risk measures. Preprint (2014). http://arxiv.org/pdf/1405.4905.pdf
  3. 3.
    Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997) Google Scholar
  4. 4.
    Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152, 5–22 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Systems & Control. Birkhäuser, Basel (1990) zbMATHGoogle Scholar
  7. 7.
    Ben Tahar, I., Lépinette, E.: Vector-valued risk measure processes. Int. J. Theor. Appl. Finance 17, 1450011 (2014) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bion-Nadal, J.: Conditional risk measures and robust representation of convex risk measures. Ecole Polytechnique, CMAP. Preprint no. 557 (2004). http://www.cmap.polytechnique.fr/preprint/repository/557.pdf
  9. 9.
    Bion-Nadal, J.: Dynamic risk measures: time consistency and risk measures from BMO martingales. Finance Stoch. 12, 219–244 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bion-Nadal, J.: Time consistent dynamic risk processes. In: Stochastic Processes and Their Applications, vol. 119, pp. 633–654 (2009) Google Scholar
  11. 11.
    Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11, 57–106 (2006) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Cheridito, P., Kupper, M.: Composition of time-consistent dynamic monetary risk measures in discrete time. Int. J. Theor. Appl. Finance 14, 137–162 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Cheridito, P., Stadje, M.: Time-inconsistency of VaR and time-consistent alternatives. Finance Res. Lett. 6, 40–46 (2009) CrossRefGoogle Scholar
  14. 14.
    Delbaen, F.: The structure of m-stable sets and in particular of the set of risk neutral measures. In: Émery, M., Yor, M. (eds.) Memoriam Paul-André Meyer. Lecture Notes in Mathematics, vol. 1874, pp. 215–258. Springer, Berlin (2006) CrossRefGoogle Scholar
  15. 15.
    Delbaen, F., Peng, S., Rosazza Gianin, E.: Representation of the penalty term of dynamic concave utilities. Finance Stoch. 14, 449–472 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Detlefsen, K., Scandolo, G.: Conditional and dynamic convex risk measures. Finance Stoch. 9, 539–561 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Feinstein, Z., Rudloff, B.: Time consistency of dynamic risk measures in markets with transaction costs. Quant. Finance 13, 1473–1489 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Feinstein, Z., Rudloff, B.: A comparison of techniques for dynamic multivariate risk measures. In: Hamel, A., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.) Set Optimization and Applications in Finance—The State of the Art. Springer Proceedings in Mathematics & Statistics Springer, Berlin (2014). http://arxiv.org/pdf/1305.2151.pdf Google Scholar
  19. 19.
    Föllmer, H., Penner, I.: Convex risk measures and the dynamics of their penalty functions. Stat. Decis. 24, 61–96 (2006) zbMATHGoogle Scholar
  20. 20.
    Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6, 429–447 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. De Gruyter Studies in Mathematics. de Gruyter, Berlin (2011) CrossRefGoogle Scholar
  22. 22.
    Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Finance 26, 1473–1486 (2002) CrossRefGoogle Scholar
  23. 23.
    Frittelli, M., Rosazza Gianin, E.: Dynamic convex risk measures. In: Szegö, G.P. (ed.) New Risk Measures for the 21st Century, pp. 227–248. Wiley, New York (2004) Google Scholar
  24. 24.
    Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics. Springer, Berlin (2003) zbMATHGoogle Scholar
  25. 25.
    Hamel, A.H.: A duality theory for set-valued functions I: Fenchel conjugation theory. Set-Valued Var. Anal. 17, 153–182 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hamel, A.H., Heyde, F.: Duality for set-valued measures of risk. SIAM J. Financ. Math. 1, 66–95 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5, 1–28 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Hamel, A.H., Rudloff, B.: Continuity and finite-valuedness of set-valued risk measures. In: Tammer, C., Heyde, F. (eds.) Festschrift in Celebration of Prof. Dr. Wilfried Greckschs’ 60th Birthday, pp. 46–64. Shaker, Aachen (2008) Google Scholar
  29. 29.
    Hamel, A.H., Rudloff, B., Yankova, M.: Set-valued average value at risk and its computation. Math. Financ. Econ. 7, 229–246 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Heyde, F., Schrage, C.: Continuity concepts for set-valued functions and a fundamental duality formula for set-valued optimization. J. Math. Anal. Appl. 397, 772–784 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis: Volume I: Theory. Mathematics and Its Applications. Springer, Berlin (1997) CrossRefzbMATHGoogle Scholar
  32. 32.
    Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8, 531–552 (2004) zbMATHMathSciNetGoogle Scholar
  33. 33.
    Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3, 237–248 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Kabanov, Y.M., Safarian, M.: Markets with Transaction Costs: Mathematical Theory. Springer, Berlin (2009) Google Scholar
  35. 35.
    Klöppel, S., Schweizer, M.: Dynamic indifference valuation via convex risk measures. Math. Finance 17, 599–627 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Löhne, A.: Vector Optimization with Infimum and Supremum. Vector Optimization. Springer, Berlin (2011) CrossRefGoogle Scholar
  37. 37.
    Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios in markets with transaction costs. Int. J. Theor. Appl. Finance 17, 1450012 (2014) CrossRefMathSciNetGoogle Scholar
  38. 38.
    Pennanen, T., Penner, I.: Hedging of claims with physical delivery under convex transaction costs. SIAM J. Financ. Math. 1, 158–178 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Riedel, F.: Dynamic coherent risk measures. In: Stochastic Processes and Their Applications, vol. 112, pp. 185–200 (2004) Google Scholar
  40. 40.
    Ruszczynski, A., Shapiro, A.: Conditional risk mappings. Math. Oper. Res. 31, 544–561 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14, 19–48 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Yan, J.-A.: On the commutability of essential infimum and conditional expectation operations. Chin. Sci. Bull. 30, 1013–1018 (1985) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Electrical and Systems EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Department of Operations Research and Financial Engineering, Bendheim Center for FinancePrinceton UniversityPrincetonUSA

Personalised recommendations