Finance and Stochastics

, Volume 17, Issue 1, pp 31–72 | Cite as

Generalized stochastic target problems for pricing and partial hedging under loss constraints—application in optimal book liquidation

  • Bruno BouchardEmail author
  • Ngoc-Minh Dang


We consider a singular version with state constraints of the stochastic target problems studied in Soner and Touzi (SIAM J. Control Optim. 41:404–424, 2002; J. Eur. Math. Soc. 4:201–236, 2002) and more recently Bouchard et al. (SIAM J. Control Optim. 48:3123–3150, 2009), among others. This provides a general framework for the pricing of contingent claims under risk constraints. Our extended version perfectly fits the market models with proportional transaction costs and the order book liquidation issues. Our main result is a direct PDE characterization of the associated pricing function. As an example application, we discuss the valuation of VWAP-guaranteed-type book liquidation contracts, for a general class of risk functions.


Stochastic target problems State constraints Pricing under risk constraint Book liquidation 

Mathematics Subject Classification (2010)

49L25 60J60 91G80 

JEL Classification

G11 G13 C61 


  1. 1.
    Almgren, R.: Optimal trading in a dynamic market. Technical report (2009).
  2. 2.
    Almgren, R., Harts, B.: A dynamic algorithm for smart order routing. Technical report, white paper streambase (2008).
  3. 3.
    Almgren, R.F., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–39 (2000) Google Scholar
  4. 4.
    Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete Time Case. Mathematics in Science and Engineering. Academic Press, San Diego (1978) zbMATHGoogle Scholar
  5. 5.
    Bertsimas, D., Lo, A.W., Hummel, P.: Optimal control of execution costs for portfolios. Comput. Sci. Eng. 1, 40–53 (1999) CrossRefGoogle Scholar
  6. 6.
    Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48, 3123–3150 (2009) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bouchard, B., Dang, N.M., Lehalle, C.A.: Optimal control of trading algorithms: a general impulse control approach. SIAM J. Financ. Math. 2, 404–438 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bouchard, B., Nutz, M.: 2011, Weak dynamic programming for generalized state constraints. Preprint.
  9. 9.
    Bouchard, B., Touzi, N.: Explicit solution of the multivariate super-replication problem under transaction costs. Ann. Appl. Probab. 10, 685–708 (2000) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bouchard, B., Vu, T.N.: The American version of the geometric dynamic programming principle: application to the pricing of American options under constraints. Appl. Math. Optim. 61, 235–265 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Am. Math. Soc. 27, 1–67 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cheridito, P., Soner, M., Touzi, N.: The multi-dimensional super-replication problem under gamma constraints. Ann. Inst. Henri Poincaré, Sér. C: Anal. Non-Linéaire 22, 633–666 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Cvitanić, J., Pham, H., Touzi, N.: Super-replication in stochastic volatility models with portfolio constraints. J. Appl. Probab. 36, 523–545 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cvitanić, J., Pham, H., Touzi, N.: A closed-form solution to the problem of super-replication under transaction costs. Finance Stoch. 3, 35–54 (1999) zbMATHCrossRefGoogle Scholar
  15. 15.
    Dupuis, P., Ishii, H.: SDEs with oblique reflection on nonsmooth domains. Ann. Probab. 21, 554–580 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3, 251–273 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Föllmer, H., Leukert, P.: Efficient hedging: cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3, 237–248 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Pagès, G., Laruelle, S., Lehalle, C.A.: Optimal split of orders across liquidity pools: a stochastic algorithm approach. SIAM J. Financ. Math. 2, 1042–1076 (2011) zbMATHCrossRefGoogle Scholar
  20. 20.
    Soner, H.M.: Optimal control with state-space constraint I. SIAM J. Control Optim. 24, 552–561 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Soner, H.M.: Optimal control with state-space constraint II. SIAM J. Control Optim. 24, 1110–1122 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Soner, H.M., Touzi, N.: Super-replication under gamma constraints. SIAM J. Control Optim. 39, 73–96 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Soner, H.M., Touzi, N.: Stochastic target problems, dynamic programming and viscosity solutions. SIAM J. Control Optim. 41, 404–424 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4, 201–236 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Soner, H.M., Touzi, N.: The problem of super-replication under constraints. In: Carmona, R.A., Çinlar, E., Ekeland, I., Jouini, E., Scheinkman, J., Touzi, N. (eds.) Paris–Princeton Lectures on Mathematical Finance. Lecture Notes in Mathematics, vol. 1814, pp. 133–172. Springer, Berlin (2002) CrossRefGoogle Scholar
  26. 26.
    Touzi, N.: Direct characterization of the value of super-replication under stochastic volatility and portfolio constraints. Stoch. Process. Appl. 88, 305–328 (2000) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.CEREMADEUniversité Paris DauphineParis cedex 16France
  2. 2.CRESTENSAE-ParisTechMalakoffFrance
  3. 3.CA CheuvreuxCourbevoieFrance

Personalised recommendations