Generalized stochastic target problems for pricing and partial hedging under loss constraints—application in optimal book liquidation
- 386 Downloads
- 12 Citations
Abstract
We consider a singular version with state constraints of the stochastic target problems studied in Soner and Touzi (SIAM J. Control Optim. 41:404–424, 2002; J. Eur. Math. Soc. 4:201–236, 2002) and more recently Bouchard et al. (SIAM J. Control Optim. 48:3123–3150, 2009), among others. This provides a general framework for the pricing of contingent claims under risk constraints. Our extended version perfectly fits the market models with proportional transaction costs and the order book liquidation issues. Our main result is a direct PDE characterization of the associated pricing function. As an example application, we discuss the valuation of VWAP-guaranteed-type book liquidation contracts, for a general class of risk functions.
Keywords
Stochastic target problems State constraints Pricing under risk constraint Book liquidationMathematics Subject Classification (2010)
49L25 60J60 91G80JEL Classification
G11 G13 C61References
- 1.Almgren, R.: Optimal trading in a dynamic market. Technical report (2009). http://www.math.nyu.edu/financial_mathematics/content/02_financial/2009-2.pdf
- 2.Almgren, R., Harts, B.: A dynamic algorithm for smart order routing. Technical report, white paper streambase (2008). http://www.streambase.com/wp-content/uploads/downloads/StreamBase_White_Paper_Smart_Order_Routing_low.pdf
- 3.Almgren, R.F., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–39 (2000) Google Scholar
- 4.Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete Time Case. Mathematics in Science and Engineering. Academic Press, San Diego (1978) zbMATHGoogle Scholar
- 5.Bertsimas, D., Lo, A.W., Hummel, P.: Optimal control of execution costs for portfolios. Comput. Sci. Eng. 1, 40–53 (1999) CrossRefGoogle Scholar
- 6.Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48, 3123–3150 (2009) MathSciNetCrossRefGoogle Scholar
- 7.Bouchard, B., Dang, N.M., Lehalle, C.A.: Optimal control of trading algorithms: a general impulse control approach. SIAM J. Financ. Math. 2, 404–438 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Bouchard, B., Nutz, M.: 2011, Weak dynamic programming for generalized state constraints. Preprint. http://arxiv.org/abs/1105.0745
- 9.Bouchard, B., Touzi, N.: Explicit solution of the multivariate super-replication problem under transaction costs. Ann. Appl. Probab. 10, 685–708 (2000) MathSciNetzbMATHGoogle Scholar
- 10.Bouchard, B., Vu, T.N.: The American version of the geometric dynamic programming principle: application to the pricing of American options under constraints. Appl. Math. Optim. 61, 235–265 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Am. Math. Soc. 27, 1–67 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Cheridito, P., Soner, M., Touzi, N.: The multi-dimensional super-replication problem under gamma constraints. Ann. Inst. Henri Poincaré, Sér. C: Anal. Non-Linéaire 22, 633–666 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Cvitanić, J., Pham, H., Touzi, N.: Super-replication in stochastic volatility models with portfolio constraints. J. Appl. Probab. 36, 523–545 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Cvitanić, J., Pham, H., Touzi, N.: A closed-form solution to the problem of super-replication under transaction costs. Finance Stoch. 3, 35–54 (1999) zbMATHCrossRefGoogle Scholar
- 15.Dupuis, P., Ishii, H.: SDEs with oblique reflection on nonsmooth domains. Ann. Probab. 21, 554–580 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3, 251–273 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Föllmer, H., Leukert, P.: Efficient hedging: cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3, 237–248 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Pagès, G., Laruelle, S., Lehalle, C.A.: Optimal split of orders across liquidity pools: a stochastic algorithm approach. SIAM J. Financ. Math. 2, 1042–1076 (2011) zbMATHCrossRefGoogle Scholar
- 20.Soner, H.M.: Optimal control with state-space constraint I. SIAM J. Control Optim. 24, 552–561 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Soner, H.M.: Optimal control with state-space constraint II. SIAM J. Control Optim. 24, 1110–1122 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Soner, H.M., Touzi, N.: Super-replication under gamma constraints. SIAM J. Control Optim. 39, 73–96 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Soner, H.M., Touzi, N.: Stochastic target problems, dynamic programming and viscosity solutions. SIAM J. Control Optim. 41, 404–424 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4, 201–236 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Soner, H.M., Touzi, N.: The problem of super-replication under constraints. In: Carmona, R.A., Çinlar, E., Ekeland, I., Jouini, E., Scheinkman, J., Touzi, N. (eds.) Paris–Princeton Lectures on Mathematical Finance. Lecture Notes in Mathematics, vol. 1814, pp. 133–172. Springer, Berlin (2002) CrossRefGoogle Scholar
- 26.Touzi, N.: Direct characterization of the value of super-replication under stochastic volatility and portfolio constraints. Stoch. Process. Appl. 88, 305–328 (2000) MathSciNetzbMATHCrossRefGoogle Scholar