Finance and Stochastics

, Volume 16, Issue 4, pp 741–777 | Cite as

The fundamental theorem of asset pricing under transaction costs

  • Paolo Guasoni
  • Emmanuel Lépinette
  • Miklós Rásonyi


This paper proves the fundamental theorem of asset pricing with transaction costs, when bid and ask prices follow locally bounded càdlàg (right-continuous, left-limited) processes.

The robust no free lunch with vanishing risk condition (RNFLVR) for simple strategies is equivalent to the existence of a strictly consistent price system (SCPS). This result relies on a new notion of admissibility, which reflects future liquidation opportunities. The RNFLVR condition implies that admissible strategies are predictable processes of finite variation.

The Appendix develops an extension of the familiar Stieltjes integral for càdlàg integrands and finite-variation integrators, which is central to modelling transaction costs with discontinuous prices.


Arbitrage Fundamental theorem of asset pricing Transaction costs Admissible strategies Finite variation 

Mathematics Subject Classification

91B28 62P05 26A45 60H05 

JEL Classification




We are indebted to Walter Schachermayer for many stimulating discussions which inspired this paper. We also thank Friedrich Hubalek for useful comments, and Martin Schweizer for a careful reading, which helped correct some gaps in a earlier version.

Partially supported by NSF (DMS-0807994 and DMS-1109047), SFI (07/MI/008, 07/SK/M1189, 08/SRC/FMC1389), the ERC (278295), FP7 (RG-248896), the Hungarian Science Foundation (OTKA, F 049094), and the Austrian Science Fund (FWF, P 19456), at the Financial and Actuarial Mathematics Research Unit of Vienna University of Technology.


  1. 1.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973) CrossRefGoogle Scholar
  2. 2.
    Campi, L., Schachermayer, W.: A super-replication theorem in Kabanov’s model of transaction costs. Finance Stoch. 10, 579–596 (2006) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cherny, A.: General arbitrage pricing model. II. Transaction costs. In: Séminaire de Probabilités XL. Lecture Notes in Math., vol. 1899, pp. 447–461. Springer, Berlin (2007) CrossRefGoogle Scholar
  4. 4.
    Choulli, T., Stricker, Ch.: Séparation d’une sur- et d’une sousmartingale par une martingale. In: Séminaire de Probabilités, XXXII. Lecture Notes in Math., vol. 1686, pp. 67–72. Springer, Berlin (1998) CrossRefGoogle Scholar
  5. 5.
    Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. Stoch. Rep. 29, 185–201 (1990) MathSciNetMATHGoogle Scholar
  6. 6.
    Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer Finance. Springer, Berlin, (2006) MATHGoogle Scholar
  9. 9.
    Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North-Holland Mathematics Studies, vol. 29. North-Holland, Amsterdam (1978) MATHGoogle Scholar
  10. 10.
    Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72. North-Holland, Amsterdam (1982) MATHGoogle Scholar
  11. 11.
    Dybvig, P.H., Ross, S.A.: Arbitrage. The New Palgrave: A Dictionary of Economics 1, 100–106 (1987) Google Scholar
  12. 12.
    Galtchouk, L.I.: Optional martingales. Math. USSR Sb. 40, 435–468 (1981) CrossRefGoogle Scholar
  13. 13.
    Galtchouk, L.I.: Stochastic integrals with respect to optional semimartingales and random measures. Teor. Veroâtn. Ee Primen. 29, 93–107 (1984) Google Scholar
  14. 14.
    Guasoni, P.: Optimal investment with transaction costs and without semimartingales. Ann. Appl. Probab. 12, 1227–1246 (2002) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Guasoni, P., Rásonyi, M., Schachermayer, W.: The fundamental theorem of asset pricing for continuous processes under small transaction costs. Ann. Finance 6, 157–191 (2010) MATHCrossRefGoogle Scholar
  16. 16.
    Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003) MATHGoogle Scholar
  19. 19.
    Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66, 178–197 (1995) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Kabanov, Yu.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3, 237–248 (1999) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kabanov, Yu.M., Last, G.: Hedging under transaction costs in currency markets: a continuous-time model. Math. Finance 12, 63–70 (2002) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Kabanov, Yu.M., Stricker, Ch.: The Harrison-Pliska arbitrage pricing theorem under transaction costs. J. Math. Econ. 35, 185–196 (2001) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kabanov, Yu.M., Stricker, Ch.: A teachers’ note on no-arbitrage criteria. In: Séminaire de Probabilités, XXXV. Lecture Notes in Math., vol. 1755, pp. 149–152. Springer, Berlin (2001) CrossRefGoogle Scholar
  24. 24.
    Kabanov, Yu.M., Rásonyi, M., Stricker, Ch.: No-arbitrage criteria for financial markets with efficient friction. Finance Stoch. 6, 371–382 (2002) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Kramkov, D.O.: Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Relat. Fields 105, 459–479 (1996) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kreps, D.M.: Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Lenglart, E.: Tribus de Meyer et théorie des processus. In: Séminaire de Probabilité, XIV. Lecture Notes in Math., vol. 784, pp. 500–546. Springer, Berlin (1980) Google Scholar
  28. 28.
    Rásonyi, M.: A remark on the superhedging theorem under transaction costs. In: Séminaire de Probabilités XXXVII. Lecture Notes in Math., vol. 1832, pp. 394–398. Springer, Berlin (2003) CrossRefGoogle Scholar
  29. 29.
    Ross, S.A.: Return, risk and arbitrage. In: Friend, I., Bicksler, J. (eds.) Risk and Return in Finance. Ballinger, Cambridge (1977) Google Scholar
  30. 30.
    Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976) MATHGoogle Scholar
  31. 31.
    Schachermayer, W.: Martingale measures for discrete-time processes with infinite horizon. Math. Finance 4, 25–55 (1994) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14, 19–48 (2004) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Yan, J.-A.: Caractérisation d’une classe d’ensembles convexes de L 1 ou H 1. In: Séminaire de Probabilité, XIV. Lecture Notes in Math., vol. 784, pp. 220–222. Springer, Berlin (1980) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Paolo Guasoni
    • 1
    • 2
  • Emmanuel Lépinette
    • 3
  • Miklós Rásonyi
    • 4
    • 5
  1. 1.Department of Mathematics and StatisticsBoston UniversityBostonUSA
  2. 2.School of Mathematical SciencesDublin City UniversityDublin 9Ireland
  3. 3.CeremadeParis Dauphine UniversityParis Cedex 16France
  4. 4.School of MathematicsUniversity of EdinburghEdinburghUK
  5. 5.MTA SZTAKI, Institute for Computer Science and ControlPázmány Péter Catholic UniversityBudapestHungary

Personalised recommendations