Advertisement

Finance and Stochastics

, Volume 16, Issue 3, pp 403–422 | Cite as

A decomposition formula for option prices in the Heston model and applications to option pricing approximation

  • Elisa AlòsEmail author
Article

Abstract

By means of classical Itô calculus, we decompose option prices as the sum of the classical Black–Scholes formula, with volatility parameter equal to the root-mean-square future average volatility, plus a term due to correlation and a term due to the volatility of the volatility. This decomposition allows us to develop first- and second-order approximation formulas for option prices and implied volatilities in the Heston volatility framework, as well as to study their accuracy for short maturities. Numerical examples are given.

Keywords

Stochastic volatility Heston model Itô calculus 

Mathematics Subject Classification

91B28 91B70 

JEL Classification

G13 

Notes

Acknowledgements

A previous version of this paper has benefited from helpful comments by two anonymous referees.The author also wants to thank Prof. Vlad Bally for fruitful discussions and suggestions.

Supported by grants MTM2009-08869, Ministerio de Ciencia e Innovación and FEDER and SEJ2006-13537.

References

  1. 1.
    Alòs, E.: An extension of the Hull and White formula with applications to option pricing approximation. Finance Stoch. 10, 353–365 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alòs, E., Ewald, C.O.: Malliavin differentiability of the Heston volatility and applications to option pricing. Adv. Appl. Probab. 40, 144–162 (2008) zbMATHCrossRefGoogle Scholar
  3. 3.
    Alòs, E., León, J.A., Vives, J.: On the short-time behavior for the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–598 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Antonelli, F., Scarlatti, S.: Pricing options under stochastic volatility: a power series approach. Finance Stoch. 13, 269–303 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ball, C.A., Roma, A.: Stochastic volatility option pricing. J. Financ. Quant. Anal. 29, 589–607 (1994) CrossRefGoogle Scholar
  6. 6.
    Benhamou, E., Gobet, E., Miri, M.: Smart expansion and fast calibration for jump diffusion. Finance Stoch. 13, 563–589 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Benhamou, E., Gobet, E., Miri, M.: Expansion formulas for European options in a local volatility model. Int. J. Theor. Appl. Finance 13, 603–634 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Benhamou, E., Gobet, E., Miri, M.: Time dependent Heston model. SIAM J. Financ. Math. 1, 289–325 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bossy, M., Diop, A.: An efficient discretization scheme for one dimensional SDEs with a diffusion coefficient function of the form |x|α, α∈[1/2,1). Rapport de recherche, Institut National de Recherche en Informatique et en Automatique (INRIA), No. 5396 (2004). Available at http://hal.inria.fr/docs/00/15/47/45/DF/RR-5396_V2.pdf
  10. 10.
    Fouque, J.-P., Papanicolau, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  11. 11.
    Fouque, J.-P., Papanicolau, G., Sircar, K.R., Solna, K.: Singular perturbations in option pricing. SIAM J. Appl. Math. 63, 1648–1665 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E.: Managing smile risk. Wilmott Mag. 15, 84–108 (2002) Google Scholar
  13. 13.
    Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993) CrossRefGoogle Scholar
  14. 14.
    Hull, J.C., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987) Google Scholar
  15. 15.
    Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4, 727–752 (1991) CrossRefGoogle Scholar
  16. 16.
    Scott, L.O.: Option pricing when the variance changes randomly: theory, estimation and application. J. Financ. Quant. Anal. 22, 419–438 (1987) CrossRefGoogle Scholar
  17. 17.
    Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein–Uhlenbeck process: an extension. Eur. Finance Rev. 3, 23–46 (1999) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Dpt. d’Economia i EmpresaUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations