Finance and Stochastics

, Volume 16, Issue 3, pp 513–535 | Cite as

Default times, no-arbitrage conditions and changes of probability measures

  • Delia Coculescu
  • Monique Jeanblanc
  • Ashkan Nikeghbali


In this paper, we give a financial justification, based on no-arbitrage conditions, of the (H)-hypothesis in default time modeling. We also show how the (H)-hypothesis is affected by an equivalent change of probability measure. The main technique used here is the theory of progressive enlargements of filtrations.


Default modeling Credit risk models Random times Enlargements of filtrations Immersed filtrations No-arbitrage conditions Equivalent change of measure 

Mathematics Subject Classification (2010)

60G07 91G40 

JEL Classification

C60 G12 G14 



The authors would like to thank an associate editor for a very careful reading and for many suggestions which helped to improve the paper. We also wish to thank two anonymous referees for very helpful comments.

D. Coculescu was supported by the National Centre of Competence in Research “Financial Valuation and Risk Management” (NCCR FINRISK) and by Credit Suisse. M. Jeanblanc benefited from the support of the “Chaire Risque de Crédit”, Fédération Bancaire Française.


  1. 1.
    Azéma, J.: Quelques applications de la théorie générale des processus I. Invent. Math. 18, 293–336 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barlow, M.T.: Study of a filtration expanded to include an honest time. Z. Wahrscheinlichkeitstheor. Verw. Geb. 44, 307–324 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Beghdadi-Sakrani, S., Emery, M.: On certain probabilities equivalent to coin-tossing, d’après Schachermayer. In: Sém. Proba. XXIII. Lecture Notes in Mathematics, vol. 1709, pp. 240–256 (1999) CrossRefGoogle Scholar
  4. 4.
    Blanchet-Scalliet, C., Jeanblanc, M.: Hazard rate for credit risk and hedging defaultable contingent claims. Finance Stoch. 8, 145–159 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brémaud, P., Yor, M.: Changes of filtration and of probability measures. Z. Wahrscheinlichkeitstheor. Verw. Geb. 45, 269–295 (1978) zbMATHCrossRefGoogle Scholar
  6. 6.
    Coculescu, D., Nikeghbali, A.: Hazard processes and martingale hazard processes. Math. Finance (to appear). Preprint available on doi: 10.1111/j.1467-9965.2010.0047.x
  7. 7.
    Coculescu, D., Geman, H., Jeanblanc, M.: Valuation of default-sensitive claims under imperfect information. Finance Stoch. 12, 195–218 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Delbaen, F., Schachermeyer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dellacherie, C.: Capacités et Processus Stochastiques. Springer, Berlin (1972) zbMATHGoogle Scholar
  10. 10.
    Dellacherie, C., Meyer, P.A.: A propos du travail de Yor sur les grossissements des tribus. In: Sém. Proba. XII. Lecture Notes in Mathematics, vol. 649, pp. 69–78 (1978) CrossRefGoogle Scholar
  11. 11.
    Dellacherie, C., Maisonneuve, B., Meyer, P.A.: Probabilités et potentiel. In: Chapitres XVII–XXIV: Processus de Markov (fin), Compléments de calcul stochastique. Hermann, Paris (1992) Google Scholar
  12. 12.
    Duffie, D., Lando, D.: Term structures of credit spreads with incomplete accounting information. Econometrica 69, 633–664 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Elliott, R.J., Jeanblanc, M., Yor, M.: On models of default risk. Math. Finance 10, 179–196 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    El Karoui, N., Jeanblanc, M., Jiao, Y.: What happens after a default: the conditional density approach. Stoch. Process. Appl. 120, 1011–1032 (2010) zbMATHCrossRefGoogle Scholar
  15. 15.
    Giesecke, K., Goldberg, L.: Forecasting default in the face of uncertainty. J. Deriv. 12, 14–25 (2004) CrossRefGoogle Scholar
  16. 16.
    Guo, X., Jarrow, R.A., Zeng, Y.: Credit risk models with incomplete information. Math. Oper. Res. 34, 320–332 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Frey, R., Schmidt, T.: Pricing corporate securities under noisy asset information. Math. Finance 19, 403–421 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Imkeller, P.: Random times at which insiders can have free lunches. Stoch. Stoch. Rep. 74, 465–487 (2002) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Itô, K., Watanabe, S.: Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier Grenoble 15, 13–30 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Jeanblanc, M., Valchev, S.: Partial information and hazard process. Int. J. Theor. Appl. Finance 8, 807–838 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Jeulin, T.: Grossissement d’une filtration et applications. In: Sém. Proba. XIII. Lecture Notes in Mathematics, vol. 721, pp. 574–609 (1979) CrossRefGoogle Scholar
  22. 22.
    Jeulin, T.: Semi-martingales et grossissements d’une filtration. Lecture Notes in Mathematics, vol. 833. Springer, Berlin (1980) Google Scholar
  23. 23.
    Jeulin, T., Yor, M.: Grossissement d’une filtration et semimartingales: formules explicites. In: Sém. Proba. XII. Lecture Notes in Mathematics, vol. 649, pp. 78–97 (1978) CrossRefGoogle Scholar
  24. 24.
    Jeulin, T., Yor, M.: Nouveaux résultats sur le grossissement des tribus. Ann. Sci. Èc. Norm. Super. 4(11), 429–443 (1978) MathSciNetGoogle Scholar
  25. 25.
    Jeulin, T., Yor, M. (eds.): Grossissements de Filtrations: Exemples et Applications. Lecture Notes in Mathematics, vol. 1118. Springer, Berlin (1985) zbMATHGoogle Scholar
  26. 26.
    Kusuoka, S.: A remark on default risk models. Adv. Math. Econ. 1, 69–82 (1999) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mansuy, R., Yor, M.: Random Times and Enlargements of Filtrations in a Brownian Setting. Lecture Notes in Mathematics, vol. 1873. Springer, Berlin (2006) zbMATHGoogle Scholar
  28. 28.
    Nikeghbali, A.: An essay on the general theory of stochastic processes. Probab. Surv. 3, 345–412 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Nikeghbali, A.: Non stopping times and stopping theorems. Stoch. Process. Appl. 117, 457–475 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Nikeghbali, A., Yor, M.: A definition and some characteristic properties of pseudo-stopping times. Ann. Probab. 33, 1804–1824 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2005). Version 2.1 Google Scholar
  32. 32.
    Yor, M.: Grossissements d’une filtration et semi-martingales: théorèmes généraux. In: Sém. Proba. XII. Lecture Notes in Mathematics, vol. 649, pp. 61–69 (1978) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Delia Coculescu
    • 1
  • Monique Jeanblanc
    • 2
  • Ashkan Nikeghbali
    • 1
    • 3
  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland
  2. 2.Département de MathématiquesUniversité d’Evry Val d’Essonne and Institut Europlace de FinanceEvry CedexFrance
  3. 3.Swiss Banking InstituteUniversität ZürichZürichSwitzerland

Personalised recommendations