Finance and Stochastics

, Volume 13, Issue 3, pp 307–349

# Quasi-Monte Carlo methods with applications in finance

Open Access
Article

## Abstract

We review the basic principles of quasi-Monte Carlo (QMC) methods, the randomizations that turn them into variance-reduction techniques, the integration error and variance bounds obtained in terms of QMC point set discrepancy and variation of the integrand, and the main classes of point set constructions: lattice rules, digital nets, and permutations in different bases. QMC methods are designed to estimate s-dimensional integrals, for moderate or large (perhaps infinite) values of s. In principle, any stochastic simulation whose purpose is to estimate an integral fits this framework, but the methods work better for certain types of integrals than others (e.g., if the integrand can be well approximated by a sum of low-dimensional smooth functions). Such QMC-friendly integrals are encountered frequently in computational finance and risk analysis. We summarize the theory, give examples, and provide computational results that illustrate the efficiency improvement achieved. This article is targeted mainly for those who already know Monte Carlo methods and their application in finance, and want an update of the state of the art on quasi-Monte Carlo methods.

### Keywords

Monte Carlo Quasi-Monte Carlo Variance reduction Effective dimension Discrepancy Hilbert spaces

### Mathematics Subject Classification (2000)

65C05 68U20 91B28

C15 C63

### References

1. 1.
Acworth, P., Broadie, M., Glasserman, P.: A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 1–18. Springer, New York (1998) Google Scholar
2. 2.
Avramidis, T., L’Ecuyer, P.: Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance-gamma model. Manag. Sci. 52, 1930–1944 (2006) Google Scholar
3. 3.
Avramidis, T., L’Ecuyer, P., Tremblay, P.A.: Efficient simulation of gamma and variance-gamma processes. In: Proceedings of the 2003 Winter Simulation Conference, pp. 319–326. IEEE Press, Piscataway (2003) Google Scholar
4. 4.
Ben-Ameur, H., L’Ecuyer, P., Lemieux, C.: Combination of general antithetic transformations and control variables. Math. Oper. Res. 29, 946–960 (2004)
5. 5.
Bierbrauer, J., Edel, Y.: Construction of digital nets from BCH-codes. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 221–231. Springer, New York (1998) Google Scholar
6. 6.
Boyle, P.: Options: a Monte Carlo approach. J. Financ. Econ. 4, 323–338 (1977) Google Scholar
7. 7.
Boyle, P., Lai, Y., Tan, K.S.: Pricing options using lattice rules. North Am. Actuar. J. 9(3), 50–76 (2005)
8. 8.
Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 2, 195–213 (1992)
9. 9.
Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension. J. Comput. Finance 1, 27–46 (1997) Google Scholar
10. 10.
Chaudhary, S.K.: American options and the LSM algorithm: quasi-random sequences and Brownian bridges. J. Comput. Finance 8, 101–115 (2005) Google Scholar
11. 11.
Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28, 2162–2188 (2006)
12. 12.
Cools, R., Nuyens, D.: A Belgian view on lattice rules. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 3–21. Springer, Berlin (2008) Google Scholar
13. 13.
Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904–914 (1976)
14. 14.
Cristea, L.L., Dick, J., Leobacher, G., Pillichshammer, F.: The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets. Numer. Math. 105, 413–455 (2007)
15. 15.
Dick, J.: Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions (2008). http://www2.maths.unsw.edu.au/Contacts/profile.php?logname=josi
16. 16.
Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order (2008). http://www2.maths.unsw.edu.au/Contacts/profile.php?logname=josi
17. 17.
Dick, J., Sloan, I.H., Wang, X., Wozniakowski, H.: Liberating the weights. J. Complex. 20, 593–623 (2004)
18. 18.
Dick, J., Sloan, I.H., Wang, X., Wozniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103, 63–97 (2006)
19. 19.
Edel, Y., L’Ecuyer, P.: A coding theoretic approach to building nets with well-equidistributed projections. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 313–325. Springer, Berlin (2008) Google Scholar
20. 20.
Faure, H.: Discrépance des suites associées à un système de numération en dimension s. Acta Arith. 61, 337–351 (1982)
21. 21.
Faure, H., Tezuka, S.: Another random scrambling of digital (t,s)-sequences. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 242–256. Springer, Berlin (2002) Google Scholar
22. 22.
Fox, B.L.: Strategies for Quasi-Monte Carlo. Kluwer Academic, Boston (1999) Google Scholar
23. 23.
Friedel, I., Keller, A.: Fast generation of randomized low-discrepancy point sets. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 257–273. Springer, Berlin (2001) Google Scholar
24. 24.
Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)
25. 25.
Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)
26. 26.
Hammersley, J.M.: Monte Carlo methods for solving multivariate problems. Ann. N. Y. Acad. Sci. 86, 844–874 (1960)
27. 27.
Heinrich, S., Hickernell, F.J., Yue, R.X.: Optimal quadrature for Haar wavelet spaces. Math. Comput. 73, 259–277 (2004)
28. 28.
Hellekalek, P.: On the assessment of random and quasi-random point sets. In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol. 138, pp. 49–108. Springer, New York (1998) Google Scholar
29. 29.
Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299–322 (1998)
30. 30.
Hickernell, F.J.: Lattice rules: How well do they measure up?. In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol. 138, pp. 109–166. Springer, New York (1998) Google Scholar
31. 31.
Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature?. In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 16–55. Springer, Berlin (2000) Google Scholar
32. 32.
Hickernell, F.J.: Obtaining O(N −2+ε) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002) Google Scholar
33. 33.
Hickernell, F.J.: My dream quadrature rule. J. Complex. 19, 420–427 (2003)
34. 34.
Hickernell, F.J., Hong, H.S.: The asymptotic efficiency of randomized nets for quadrature. Math. Comput. 68(226), 767–791 (1999)
35. 35.
Hickernell, F.J., Hong, H.S., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2001)
36. 36.
Hickernell, F.J., Lemieux, C., Owen, A.B.: Control variates for quasi-Monte Carlo. Stat. Sci. 20, 1–31 (2005)
37. 37.
Hickernell, F.J., Sloan, I.H., Wasilkowski, G.W.: On strong tractability of weighted multivariate integration. Math. Comput. 73(248), 1903–1911 (2004)
38. 38.
Hickernell, F.J., Wózniakowski, H.: The price of pessimism for multidimensional quadrature. J. Complex. 17, 625–659 (2001)
39. 39.
Hong, H.S., Hickernell, F.H.: Algorithm 823: implementing scrambled digital sequences. ACM Trans. Math. Softw. 29, 95–109 (2003)
40. 40.
Hua, L., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Berlin (1981)
41. 41.
Imai, J., Tan, K.S.: Enhanced quasi-Monte Carlo methods with dimension reduction. In: Yücesan, E., Chen, C.H., Snowdon, J.L., Charnes, J.M. (eds.) Proceedings of the 2002 Winter Simulation Conference, pp. 1502–1510. IEEE Press, Piscataway (2002) Google Scholar
42. 42.
Imai, J., Tan, K.S.: Minimizing effective dimension using linear transformation. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 275–292. Springer, Berlin (2004) Google Scholar
43. 43.
Imai, J., Tan, K.S.: A general dimension reduction technique for derivative pricing. J. Comput. Finance 10, 129–155 (2006) Google Scholar
44. 44.
Jäckel, P.: Monte Carlo Methods in Finance. Wiley, Chichester (2002) Google Scholar
45. 45.
Joe, S., Kuo, F.Y.: Remark on algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29, 49–57 (2003)
46. 46.
Joe, S., Kuo, F.Y.: Constructing Sobol’ sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654 (2008)
47. 47.
Joe, S., Sloan, I.H.: Embedded lattice rules for multidimensional integration. SIAM J. Numer. Anal. 29, 1119–1135 (1992)
48. 48.
Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 3rd edn. Addison-Wesley, Reading (1998) Google Scholar
49. 49.
Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complex. 19, 301–320 (2003)
50. 50.
Kuo, F.Y., Sloan, I.H.: Lifting the curse of dimensionality. Not. Am. Math. Soc. 52, 1320–1328 (2005)
51. 51.
Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rule algorithms for multivariate approximation in the average case setting. J. Complex. 24, 283–323 (2008)
52. 52.
Lécot, C., Tuffin, B.: Quasi-Monte Carlo methods for estimating transient measures of discrete time Markov chains. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 329–343. Springer, Berlin (2004) Google Scholar
53. 53.
L’Ecuyer, P.: Maximally equidistributed combined Tausworthe generators. Math. Comput. 65(213), 203–213 (1996)
54. 54.
L’Ecuyer, P.: Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 47, 159–164 (1999)
55. 55.
L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice structure. Math. Comput. 68(225), 249–260 (1999)
56. 56.
L’Ecuyer, P.: Polynomial integration lattices. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 73–98. Springer, Berlin (2004) Google Scholar
57. 57.
L’Ecuyer, P.: Quasi-Monte Carlo methods in finance. In: Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the 2004 Winter Simulation Conference, pp. 1645–1655. IEEE Press, Piscataway (2004) Google Scholar
58. 58.
L’Ecuyer, P.: Uniform random number generation. In: Henderson, S.G., Nelson, B.L. (eds.) Simulation. Handbooks in Oper. Res. and Manag. Sci., pp. 55–81. Elsevier, Amsterdam (2006) Google Scholar
59. 59.
L’Ecuyer, P.: Pseudorandom number generators. In: Platen, E., Jaeckel, P. (eds.) Simulation Methods in Financial Engineering, Encyclopedia of Quantitative Finance. Wiley (2009, forthcoming). http://www.wiley.com//legacy/wileychi/eqf/index.html
60. 60.
L’Ecuyer, P.: SSJ: A Java Library for Stochastic Simulation (2008). Software user’s guide. http://www.iro.umontreal.ca/~lecuyer
61. 61.
L’Ecuyer, P., Buist, E.: Simulation in Java with SSJ. In: Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proceedings of the 2005 Winter Simulation Conference, pp. 611–620. IEEE Press, Piscataway (2005) Google Scholar
62. 62.
L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation method for Markov chains. Oper. Res. 56, 958–975 (2008) Google Scholar
63. 63.
L’Ecuyer, P., Lemieux, C.: Quasi-Monte Carlo via linear shift-register sequences. In: Proceedings of the 1999 Winter Simulation Conference, pp. 632–639. IEEE Press, Piscataway (1999) Google Scholar
64. 64.
L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag. Sci. 46, 1214–1235 (2000) Google Scholar
65. 65.
L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic, Boston (2002) Google Scholar
66. 66.
Lemieux, C.: L’utilisation de règles de réseau en simulation comme technique de réduction de la variance. PhD thesis, Université de Montréal (2000) Google Scholar
67. 67.
Lemieux, C., Cieslak, M., Luttmer, K.: RandQMC User’s Guide: A Package for Randomized Quasi-Monte Carlo Methods in C (2004). Software user’s guide. http://www.math.uwaterloo.ca/~lemieux/randqmc.html
68. 68.
Lemieux, C., L’Ecuyer, P.: On selection criteria for lattice rules and other low-discrepancy point sets. Math. Comput. Simul. 55(1–3), 139–148 (2001)
69. 69.
Lemieux, C., L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate integration and simulation. SIAM J. Sci. Comput. 24, 1768–1789 (2003)
70. 70.
Lin, J., Wang, X.: New Brownian bridge construction in quasi-Monte Carlo methods for computational finance. J. Complex. 24, 109–133 (2008)
71. 71.
Liu, R., Owen, A.B.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101(474), 712–721 (2006)
72. 72.
Madan, D.B., Carr, P.P., Chang, E.C.: The variance gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998)
73. 73.
Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Berlin (1999)
74. 74.
Morokoff, W.J.: Generating quasi-random paths for stochastic processes. SIAM Rev. 40, 765–788 (1998)
75. 75.
Morokoff, W.J., Caflisch, R.E.: Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput. 15, 1251–1279 (1994)
76. 76.
Moskowitz, B., Caflisch, R.E.: Smoothness and dimension reduction in quasi-Monte Carlo methods. J. Math. Comput. Model. 23, 37–54 (1996)
77. 77.
Niederreiter, H.: Point sets and sequences with small discrepancy. Monatshefte Math. 104, 273–337 (1987)
78. 78.
Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42, 143–166 (1992)
79. 79.
Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. vol. 63, SIAM, Philadelphia (1992)
80. 80.
Niederreiter, H.: Digital nets and coding theory. In: Feng, K.Q., Niederreiter, H., Xing, C.P. (eds.) Coding, Cryptography and Combinatorics. Progress in Computer Science and Applied Logic, vol. 23, pp. 247–257. Birkhäuser, Basel (2004) Google Scholar
81. 81.
Niederreiter, H., Pirsic, G.: Duality for digital nets and its applications. Acta Arith. 97, 173–182 (2001)
82. 82.
Niederreiter, H., Xing, C.: The algebraic-geometry approach to low-discrepancy sequences. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 139–160. Springer, New York (1998) Google Scholar
83. 83.
Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. Simul. 75, 903–920 (2006)
84. 84.
Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complex. 22, 4–28 (2006)
85. 85.
Owen, A.B.: Randomly permuted (t,m,s)-nets and (t,s)-sequences. In: Niederreiter, H., Shiue, P.J.S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol. 106, pp. 299–317. Springer, Berlin (1995) Google Scholar
86. 86.
Owen, A.B.: Monte Carlo variance of scrambled equidistribution quadrature. SIAM J. Numer. Anal. 34, 1884–1910 (1997)
87. 87.
Owen, A.B.: Scrambled net variance for integrals of smooth functions. Ann. Stat. 25, 1541–1562 (1997)
88. 88.
Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Trans. Model. Comput. Simul. 8, 71–102 (1998)
89. 89.
Owen, A.B.: Variance with alternative scramblings of digital nets. ACM Trans. Model. Comput. Simul. 13, 363–378 (2003)
90. 90.
Owen, A.B.: Multidimensional variation for quasi-Monte Carlo. In: Fan, J., Li, G. (eds.) International Conference on Statistics in Honour of Professor Kai-Tai Fang’s 65th Birthday, pp. 49–74 (2005). http://www-stat.stanford.edu/~owen/reports/
91. 91.
Owen, A.B.: Quasi-Monte Carlo for integrands with point singularities at unknown locations. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 403–417. Springer, Berlin (2006) Google Scholar
92. 92.
Panneton, F., L’Ecuyer, P.: Infinite-dimensional highly-uniform point sets defined via linear recurrences in $$\mathbb{F}_{2^{w}}$$ . In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 419–429. Springer, Berlin (2006) Google Scholar
93. 93.
Papageorgiou, A.: The Brownian bridge does not offer a consistent advantage in quasi-Monte Carlo integration. J. Complex. 18, 171–186 (2002)
94. 94.
Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portf. Manag. 22, 113–120 (1995) Google Scholar
95. 95.
Schmid, W.C., Schürer, R.: MinT, the database for optimal (t,m,s)-net parameters (2005). http://mint.sbg.ac.at
96. 96.
Sinescu, V., Joe, S.: Good lattice rules based on the general weighted star discrepancy. Math. Comput. 76(258), 989–1004 (2007)
97. 97.
Sloan, I.H.: QMC integration—beating intractability by weighting the coordinate directions. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 103–123. Springer, Berlin (2002) Google Scholar
98. 98.
Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon, Oxford (1994)
99. 99.
Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte Carlo rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comput. 71, 1609–1640 (2002)
100. 100.
Sloan, I.H., Wang, X., Wozniakowski, H.: Finite-order weights imply tractability of multivariate integration. J. Complex. 20, 46–74 (2004)
101. 101.
Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complex. 14, 1–33 (1998)
102. 102.
Sloan, I.H., Woźniakowski, H.: Tractability of integration in non-periodic and periodic weighted tensor product Hilbert spaces. J. Complex. 18, 479–499 (2002)
103. 103.
Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Comput. Math. and Math. Phys. 7, 86–112 (1967)
104. 104.
Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, New York (1988)
105. 105.
Tuffin, B.: On the use of low-discrepancy sequences in Monte Carlo methods. Monte Carlo Methods Appl. 2, 295–320 (1996)
106. 106.
Wahba, G.: Spline Models for Observational Data. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, SIAM, Philadelphia (1990)
107. 107.
Wang, X.: On the effects of dimension reduction techniques on some high-dimensional problems in finance. Oper. Res. 54, 1063–1078 (2006)
108. 108.
Wang, X.: Constructing robust good lattice rules for computational finance. SIAM J. Sci. Comput. 29, 598–621 (2007)
109. 109.
Wang, X., Hickernell, F.J.: Randomized Halton sequences. Math. Comput. Model. 32, 887–899 (2000)
110. 110.
Wang, X., Sloan, I.H.: Why are high-dimensional finance problems often of low effective dimension?. SIAM J. Sci. Comput. 27, 159–183 (2005)
111. 111.
Wang, X., Sloan, I.H.: Efficient weighted lattice rules with applications to finance. SIAM J. Sci. Comput. 28, 728–750 (2006)
112. 112.
Wang, X., Sloan, I.H.: Brownian bridge and principal component analysis: toward removing the curse of dimensionality. IMA J. Numer. Anal. 27, 631–654 (2007)
113. 113.
Wang, X., Sloan, I.H.: Low discrepancy sequences in high dimensions: How well are their projections distributed? J. Comput. Appl. Math. 213, 366–386 (2008)
114. 114.
Wózniakowski, H.: Average case complexity of multivariate integration. Bull. Am. Math. Soc. 24, 185–194 (1991)