Finance and Stochastics

, Volume 13, Issue 3, pp 307–349 | Cite as

Quasi-Monte Carlo methods with applications in finance

  • Pierre L’Ecuyer
Open Access


We review the basic principles of quasi-Monte Carlo (QMC) methods, the randomizations that turn them into variance-reduction techniques, the integration error and variance bounds obtained in terms of QMC point set discrepancy and variation of the integrand, and the main classes of point set constructions: lattice rules, digital nets, and permutations in different bases. QMC methods are designed to estimate s-dimensional integrals, for moderate or large (perhaps infinite) values of s. In principle, any stochastic simulation whose purpose is to estimate an integral fits this framework, but the methods work better for certain types of integrals than others (e.g., if the integrand can be well approximated by a sum of low-dimensional smooth functions). Such QMC-friendly integrals are encountered frequently in computational finance and risk analysis. We summarize the theory, give examples, and provide computational results that illustrate the efficiency improvement achieved. This article is targeted mainly for those who already know Monte Carlo methods and their application in finance, and want an update of the state of the art on quasi-Monte Carlo methods.


Monte Carlo Quasi-Monte Carlo Variance reduction Effective dimension Discrepancy Hilbert spaces 

Mathematics Subject Classification (2000)

65C05 68U20 91B28 

JEL Classification

C15 C63 


  1. 1.
    Acworth, P., Broadie, M., Glasserman, P.: A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 1–18. Springer, New York (1998) Google Scholar
  2. 2.
    Avramidis, T., L’Ecuyer, P.: Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance-gamma model. Manag. Sci. 52, 1930–1944 (2006) Google Scholar
  3. 3.
    Avramidis, T., L’Ecuyer, P., Tremblay, P.A.: Efficient simulation of gamma and variance-gamma processes. In: Proceedings of the 2003 Winter Simulation Conference, pp. 319–326. IEEE Press, Piscataway (2003) Google Scholar
  4. 4.
    Ben-Ameur, H., L’Ecuyer, P., Lemieux, C.: Combination of general antithetic transformations and control variables. Math. Oper. Res. 29, 946–960 (2004) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bierbrauer, J., Edel, Y.: Construction of digital nets from BCH-codes. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 221–231. Springer, New York (1998) Google Scholar
  6. 6.
    Boyle, P.: Options: a Monte Carlo approach. J. Financ. Econ. 4, 323–338 (1977) Google Scholar
  7. 7.
    Boyle, P., Lai, Y., Tan, K.S.: Pricing options using lattice rules. North Am. Actuar. J. 9(3), 50–76 (2005) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 2, 195–213 (1992) zbMATHGoogle Scholar
  9. 9.
    Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension. J. Comput. Finance 1, 27–46 (1997) Google Scholar
  10. 10.
    Chaudhary, S.K.: American options and the LSM algorithm: quasi-random sequences and Brownian bridges. J. Comput. Finance 8, 101–115 (2005) Google Scholar
  11. 11.
    Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28, 2162–2188 (2006) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Cools, R., Nuyens, D.: A Belgian view on lattice rules. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 3–21. Springer, Berlin (2008) Google Scholar
  13. 13.
    Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904–914 (1976) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Cristea, L.L., Dick, J., Leobacher, G., Pillichshammer, F.: The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets. Numer. Math. 105, 413–455 (2007) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Dick, J.: Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions (2008).
  16. 16.
    Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order (2008).
  17. 17.
    Dick, J., Sloan, I.H., Wang, X., Wozniakowski, H.: Liberating the weights. J. Complex. 20, 593–623 (2004) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Dick, J., Sloan, I.H., Wang, X., Wozniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103, 63–97 (2006) zbMATHMathSciNetGoogle Scholar
  19. 19.
    Edel, Y., L’Ecuyer, P.: A coding theoretic approach to building nets with well-equidistributed projections. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 313–325. Springer, Berlin (2008) Google Scholar
  20. 20.
    Faure, H.: Discrépance des suites associées à un système de numération en dimension s. Acta Arith. 61, 337–351 (1982) MathSciNetGoogle Scholar
  21. 21.
    Faure, H., Tezuka, S.: Another random scrambling of digital (t,s)-sequences. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 242–256. Springer, Berlin (2002) Google Scholar
  22. 22.
    Fox, B.L.: Strategies for Quasi-Monte Carlo. Kluwer Academic, Boston (1999) Google Scholar
  23. 23.
    Friedel, I., Keller, A.: Fast generation of randomized low-discrepancy point sets. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 257–273. Springer, Berlin (2001) Google Scholar
  24. 24.
    Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004) zbMATHGoogle Scholar
  25. 25.
    Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960) MathSciNetGoogle Scholar
  26. 26.
    Hammersley, J.M.: Monte Carlo methods for solving multivariate problems. Ann. N. Y. Acad. Sci. 86, 844–874 (1960) zbMATHMathSciNetGoogle Scholar
  27. 27.
    Heinrich, S., Hickernell, F.J., Yue, R.X.: Optimal quadrature for Haar wavelet spaces. Math. Comput. 73, 259–277 (2004) zbMATHMathSciNetGoogle Scholar
  28. 28.
    Hellekalek, P.: On the assessment of random and quasi-random point sets. In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol. 138, pp. 49–108. Springer, New York (1998) Google Scholar
  29. 29.
    Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299–322 (1998) zbMATHMathSciNetGoogle Scholar
  30. 30.
    Hickernell, F.J.: Lattice rules: How well do they measure up?. In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol. 138, pp. 109–166. Springer, New York (1998) Google Scholar
  31. 31.
    Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature?. In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 16–55. Springer, Berlin (2000) Google Scholar
  32. 32.
    Hickernell, F.J.: Obtaining O(N −2+ε) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002) Google Scholar
  33. 33.
    Hickernell, F.J.: My dream quadrature rule. J. Complex. 19, 420–427 (2003) zbMATHMathSciNetGoogle Scholar
  34. 34.
    Hickernell, F.J., Hong, H.S.: The asymptotic efficiency of randomized nets for quadrature. Math. Comput. 68(226), 767–791 (1999) zbMATHMathSciNetGoogle Scholar
  35. 35.
    Hickernell, F.J., Hong, H.S., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2001) MathSciNetGoogle Scholar
  36. 36.
    Hickernell, F.J., Lemieux, C., Owen, A.B.: Control variates for quasi-Monte Carlo. Stat. Sci. 20, 1–31 (2005) zbMATHMathSciNetGoogle Scholar
  37. 37.
    Hickernell, F.J., Sloan, I.H., Wasilkowski, G.W.: On strong tractability of weighted multivariate integration. Math. Comput. 73(248), 1903–1911 (2004) zbMATHMathSciNetGoogle Scholar
  38. 38.
    Hickernell, F.J., Wózniakowski, H.: The price of pessimism for multidimensional quadrature. J. Complex. 17, 625–659 (2001) zbMATHGoogle Scholar
  39. 39.
    Hong, H.S., Hickernell, F.H.: Algorithm 823: implementing scrambled digital sequences. ACM Trans. Math. Softw. 29, 95–109 (2003) zbMATHMathSciNetGoogle Scholar
  40. 40.
    Hua, L., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Berlin (1981) zbMATHGoogle Scholar
  41. 41.
    Imai, J., Tan, K.S.: Enhanced quasi-Monte Carlo methods with dimension reduction. In: Yücesan, E., Chen, C.H., Snowdon, J.L., Charnes, J.M. (eds.) Proceedings of the 2002 Winter Simulation Conference, pp. 1502–1510. IEEE Press, Piscataway (2002) Google Scholar
  42. 42.
    Imai, J., Tan, K.S.: Minimizing effective dimension using linear transformation. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 275–292. Springer, Berlin (2004) Google Scholar
  43. 43.
    Imai, J., Tan, K.S.: A general dimension reduction technique for derivative pricing. J. Comput. Finance 10, 129–155 (2006) Google Scholar
  44. 44.
    Jäckel, P.: Monte Carlo Methods in Finance. Wiley, Chichester (2002) Google Scholar
  45. 45.
    Joe, S., Kuo, F.Y.: Remark on algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29, 49–57 (2003) zbMATHMathSciNetGoogle Scholar
  46. 46.
    Joe, S., Kuo, F.Y.: Constructing Sobol’ sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654 (2008) MathSciNetGoogle Scholar
  47. 47.
    Joe, S., Sloan, I.H.: Embedded lattice rules for multidimensional integration. SIAM J. Numer. Anal. 29, 1119–1135 (1992) zbMATHMathSciNetGoogle Scholar
  48. 48.
    Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 3rd edn. Addison-Wesley, Reading (1998) Google Scholar
  49. 49.
    Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complex. 19, 301–320 (2003) zbMATHGoogle Scholar
  50. 50.
    Kuo, F.Y., Sloan, I.H.: Lifting the curse of dimensionality. Not. Am. Math. Soc. 52, 1320–1328 (2005) zbMATHMathSciNetGoogle Scholar
  51. 51.
    Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rule algorithms for multivariate approximation in the average case setting. J. Complex. 24, 283–323 (2008) zbMATHGoogle Scholar
  52. 52.
    Lécot, C., Tuffin, B.: Quasi-Monte Carlo methods for estimating transient measures of discrete time Markov chains. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 329–343. Springer, Berlin (2004) Google Scholar
  53. 53.
    L’Ecuyer, P.: Maximally equidistributed combined Tausworthe generators. Math. Comput. 65(213), 203–213 (1996) zbMATHMathSciNetGoogle Scholar
  54. 54.
    L’Ecuyer, P.: Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 47, 159–164 (1999) zbMATHGoogle Scholar
  55. 55.
    L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice structure. Math. Comput. 68(225), 249–260 (1999) zbMATHMathSciNetGoogle Scholar
  56. 56.
    L’Ecuyer, P.: Polynomial integration lattices. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 73–98. Springer, Berlin (2004) Google Scholar
  57. 57.
    L’Ecuyer, P.: Quasi-Monte Carlo methods in finance. In: Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the 2004 Winter Simulation Conference, pp. 1645–1655. IEEE Press, Piscataway (2004) Google Scholar
  58. 58.
    L’Ecuyer, P.: Uniform random number generation. In: Henderson, S.G., Nelson, B.L. (eds.) Simulation. Handbooks in Oper. Res. and Manag. Sci., pp. 55–81. Elsevier, Amsterdam (2006) Google Scholar
  59. 59.
    L’Ecuyer, P.: Pseudorandom number generators. In: Platen, E., Jaeckel, P. (eds.) Simulation Methods in Financial Engineering, Encyclopedia of Quantitative Finance. Wiley (2009, forthcoming).
  60. 60.
    L’Ecuyer, P.: SSJ: A Java Library for Stochastic Simulation (2008). Software user’s guide.
  61. 61.
    L’Ecuyer, P., Buist, E.: Simulation in Java with SSJ. In: Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proceedings of the 2005 Winter Simulation Conference, pp. 611–620. IEEE Press, Piscataway (2005) Google Scholar
  62. 62.
    L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation method for Markov chains. Oper. Res. 56, 958–975 (2008) Google Scholar
  63. 63.
    L’Ecuyer, P., Lemieux, C.: Quasi-Monte Carlo via linear shift-register sequences. In: Proceedings of the 1999 Winter Simulation Conference, pp. 632–639. IEEE Press, Piscataway (1999) Google Scholar
  64. 64.
    L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag. Sci. 46, 1214–1235 (2000) Google Scholar
  65. 65.
    L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic, Boston (2002) Google Scholar
  66. 66.
    Lemieux, C.: L’utilisation de règles de réseau en simulation comme technique de réduction de la variance. PhD thesis, Université de Montréal (2000) Google Scholar
  67. 67.
    Lemieux, C., Cieslak, M., Luttmer, K.: RandQMC User’s Guide: A Package for Randomized Quasi-Monte Carlo Methods in C (2004). Software user’s guide.
  68. 68.
    Lemieux, C., L’Ecuyer, P.: On selection criteria for lattice rules and other low-discrepancy point sets. Math. Comput. Simul. 55(1–3), 139–148 (2001) zbMATHMathSciNetGoogle Scholar
  69. 69.
    Lemieux, C., L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate integration and simulation. SIAM J. Sci. Comput. 24, 1768–1789 (2003) zbMATHMathSciNetGoogle Scholar
  70. 70.
    Lin, J., Wang, X.: New Brownian bridge construction in quasi-Monte Carlo methods for computational finance. J. Complex. 24, 109–133 (2008) zbMATHMathSciNetGoogle Scholar
  71. 71.
    Liu, R., Owen, A.B.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101(474), 712–721 (2006) zbMATHMathSciNetGoogle Scholar
  72. 72.
    Madan, D.B., Carr, P.P., Chang, E.C.: The variance gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998) zbMATHGoogle Scholar
  73. 73.
    Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Berlin (1999) zbMATHGoogle Scholar
  74. 74.
    Morokoff, W.J.: Generating quasi-random paths for stochastic processes. SIAM Rev. 40, 765–788 (1998) zbMATHMathSciNetGoogle Scholar
  75. 75.
    Morokoff, W.J., Caflisch, R.E.: Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput. 15, 1251–1279 (1994) zbMATHMathSciNetGoogle Scholar
  76. 76.
    Moskowitz, B., Caflisch, R.E.: Smoothness and dimension reduction in quasi-Monte Carlo methods. J. Math. Comput. Model. 23, 37–54 (1996) zbMATHMathSciNetGoogle Scholar
  77. 77.
    Niederreiter, H.: Point sets and sequences with small discrepancy. Monatshefte Math. 104, 273–337 (1987) zbMATHMathSciNetGoogle Scholar
  78. 78.
    Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42, 143–166 (1992) zbMATHMathSciNetGoogle Scholar
  79. 79.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. vol. 63, SIAM, Philadelphia (1992) zbMATHGoogle Scholar
  80. 80.
    Niederreiter, H.: Digital nets and coding theory. In: Feng, K.Q., Niederreiter, H., Xing, C.P. (eds.) Coding, Cryptography and Combinatorics. Progress in Computer Science and Applied Logic, vol. 23, pp. 247–257. Birkhäuser, Basel (2004) Google Scholar
  81. 81.
    Niederreiter, H., Pirsic, G.: Duality for digital nets and its applications. Acta Arith. 97, 173–182 (2001) zbMATHMathSciNetGoogle Scholar
  82. 82.
    Niederreiter, H., Xing, C.: The algebraic-geometry approach to low-discrepancy sequences. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 139–160. Springer, New York (1998) Google Scholar
  83. 83.
    Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. Simul. 75, 903–920 (2006) zbMATHMathSciNetGoogle Scholar
  84. 84.
    Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complex. 22, 4–28 (2006) zbMATHMathSciNetGoogle Scholar
  85. 85.
    Owen, A.B.: Randomly permuted (t,m,s)-nets and (t,s)-sequences. In: Niederreiter, H., Shiue, P.J.S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol. 106, pp. 299–317. Springer, Berlin (1995) Google Scholar
  86. 86.
    Owen, A.B.: Monte Carlo variance of scrambled equidistribution quadrature. SIAM J. Numer. Anal. 34, 1884–1910 (1997) zbMATHMathSciNetGoogle Scholar
  87. 87.
    Owen, A.B.: Scrambled net variance for integrals of smooth functions. Ann. Stat. 25, 1541–1562 (1997) zbMATHMathSciNetGoogle Scholar
  88. 88.
    Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Trans. Model. Comput. Simul. 8, 71–102 (1998) zbMATHGoogle Scholar
  89. 89.
    Owen, A.B.: Variance with alternative scramblings of digital nets. ACM Trans. Model. Comput. Simul. 13, 363–378 (2003) MathSciNetGoogle Scholar
  90. 90.
    Owen, A.B.: Multidimensional variation for quasi-Monte Carlo. In: Fan, J., Li, G. (eds.) International Conference on Statistics in Honour of Professor Kai-Tai Fang’s 65th Birthday, pp. 49–74 (2005).
  91. 91.
    Owen, A.B.: Quasi-Monte Carlo for integrands with point singularities at unknown locations. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 403–417. Springer, Berlin (2006) Google Scholar
  92. 92.
    Panneton, F., L’Ecuyer, P.: Infinite-dimensional highly-uniform point sets defined via linear recurrences in \(\mathbb{F}_{2^{w}}\) . In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 419–429. Springer, Berlin (2006) Google Scholar
  93. 93.
    Papageorgiou, A.: The Brownian bridge does not offer a consistent advantage in quasi-Monte Carlo integration. J. Complex. 18, 171–186 (2002) zbMATHGoogle Scholar
  94. 94.
    Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portf. Manag. 22, 113–120 (1995) Google Scholar
  95. 95.
    Schmid, W.C., Schürer, R.: MinT, the database for optimal (t,m,s)-net parameters (2005).
  96. 96.
    Sinescu, V., Joe, S.: Good lattice rules based on the general weighted star discrepancy. Math. Comput. 76(258), 989–1004 (2007) zbMATHMathSciNetGoogle Scholar
  97. 97.
    Sloan, I.H.: QMC integration—beating intractability by weighting the coordinate directions. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 103–123. Springer, Berlin (2002) Google Scholar
  98. 98.
    Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon, Oxford (1994) zbMATHGoogle Scholar
  99. 99.
    Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte Carlo rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comput. 71, 1609–1640 (2002) zbMATHMathSciNetGoogle Scholar
  100. 100.
    Sloan, I.H., Wang, X., Wozniakowski, H.: Finite-order weights imply tractability of multivariate integration. J. Complex. 20, 46–74 (2004) zbMATHMathSciNetGoogle Scholar
  101. 101.
    Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complex. 14, 1–33 (1998) zbMATHGoogle Scholar
  102. 102.
    Sloan, I.H., Woźniakowski, H.: Tractability of integration in non-periodic and periodic weighted tensor product Hilbert spaces. J. Complex. 18, 479–499 (2002) zbMATHGoogle Scholar
  103. 103.
    Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Comput. Math. and Math. Phys. 7, 86–112 (1967) MathSciNetGoogle Scholar
  104. 104.
    Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, New York (1988) zbMATHGoogle Scholar
  105. 105.
    Tuffin, B.: On the use of low-discrepancy sequences in Monte Carlo methods. Monte Carlo Methods Appl. 2, 295–320 (1996) zbMATHMathSciNetGoogle Scholar
  106. 106.
    Wahba, G.: Spline Models for Observational Data. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, SIAM, Philadelphia (1990) zbMATHGoogle Scholar
  107. 107.
    Wang, X.: On the effects of dimension reduction techniques on some high-dimensional problems in finance. Oper. Res. 54, 1063–1078 (2006) MathSciNetGoogle Scholar
  108. 108.
    Wang, X.: Constructing robust good lattice rules for computational finance. SIAM J. Sci. Comput. 29, 598–621 (2007) zbMATHMathSciNetGoogle Scholar
  109. 109.
    Wang, X., Hickernell, F.J.: Randomized Halton sequences. Math. Comput. Model. 32, 887–899 (2000) zbMATHMathSciNetGoogle Scholar
  110. 110.
    Wang, X., Sloan, I.H.: Why are high-dimensional finance problems often of low effective dimension?. SIAM J. Sci. Comput. 27, 159–183 (2005) zbMATHMathSciNetGoogle Scholar
  111. 111.
    Wang, X., Sloan, I.H.: Efficient weighted lattice rules with applications to finance. SIAM J. Sci. Comput. 28, 728–750 (2006) zbMATHMathSciNetGoogle Scholar
  112. 112.
    Wang, X., Sloan, I.H.: Brownian bridge and principal component analysis: toward removing the curse of dimensionality. IMA J. Numer. Anal. 27, 631–654 (2007) zbMATHMathSciNetGoogle Scholar
  113. 113.
    Wang, X., Sloan, I.H.: Low discrepancy sequences in high dimensions: How well are their projections distributed? J. Comput. Appl. Math. 213, 366–386 (2008) zbMATHMathSciNetGoogle Scholar
  114. 114.
    Wózniakowski, H.: Average case complexity of multivariate integration. Bull. Am. Math. Soc. 24, 185–194 (1991) zbMATHGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.DIROUniversité de MontréalMontréalCanada

Personalised recommendations