Advertisement

Finance and Stochastics

, Volume 12, Issue 2, pp 149–172 | Cite as

Yield curve shapes and the asymptotic short rate distribution in affine one-factor models

  • Martin Keller-ResselEmail author
  • Thomas Steiner
Article

Abstract

We consider a model for interest rates where the short rate is given under the risk-neutral measure by a time-homogeneous one-dimensional affine process in the sense of Duffie, Filipović, and Schachermayer. We show that in such a model yield curves can only be normal, inverse, or humped (i.e., endowed with a single local maximum). Each case can be characterized by simple conditions on the present short rate r t . We give conditions under which the short rate process converges to a limit distribution and describe the risk-neutral limit distribution in terms of its cumulant generating function. We apply our results to the Vasiček model, the CIR model, a CIR model with added jumps, and a model of Ornstein–Uhlenbeck type.

Keywords

Affine process Term structure of interest rates Ornstein–Uhlenbeck process Yield curve 

Mathematics Subject Classification (2000)

60J25 91B28 

JEL

E43 G12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brigo, D., Mercurio, F.: Interest Rate Models—Theory and Practice, 2nd edn. Springer Finance. Springer, Berlin (2006) zbMATHGoogle Scholar
  2. 2.
    Carmona, R., Tehranchi, M.: Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer Finance. Springer, Berlin (2006) zbMATHGoogle Scholar
  3. 3.
    Cheridito, P., Filipović, D., Yor, M.: Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann. Appl. Probab. 15, 1713–1732 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Duffie, D., Gârleanu, N.: Risk and valuation of collateralized debt obligations. Financ. Anal. J. 57, 41–59 (2001) CrossRefGoogle Scholar
  6. 6.
    Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Filipović, D.: A general characterization of one factor affine term structure models. Finance Stoch. 5, 389–412 (2001) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Jurek, Z.J., Vervaat, W.: An integral representation for self-decomposable Banach space valued random variables. Z. Wahrsch. Verwandte Geb. 62, 247–262 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lukacs, E.: Characteristic Functions. Charles Griffin & Co Ltd. (1960) Google Scholar
  10. 10.
    Nicolato, E., Venardos, E.: Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type. Math. Finance 13, 445–466 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rebonato, R.: Interest-Rate Option Models. 2nd edn. Wiley, New York (1998) zbMATHGoogle Scholar
  12. 12.
    Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales, 2nd edn., vol. 1. Cambridge Mathematical Library (1994) Google Scholar
  13. 13.
    Sato, K.-i.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  14. 14.
    Sato, K.-i., Yamazato, M.: Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type. Stoch. Process. Appl. 17, 73–100 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Steutel, F., van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Dekker, New York (2004) zbMATHGoogle Scholar
  16. 16.
    Vasiček, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5, 177–188 (1977) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Vienna University of TechnologyWienAustria

Personalised recommendations