Advertisement

Finance and Stochastics

, Volume 11, Issue 2, pp 213–236 | Cite as

Correspondence between lifetime minimum wealth and utility of consumption

  • Erhan Bayraktar
  • Virginia R. Young
Article

Abstract

We establish when the two problems of minimizing a function of lifetime minimum wealth and of maximizing utility of lifetime consumption result in the same optimal investment strategy on a given open interval O in wealth space. To answer this question, we equate the two investment strategies and show that if the individual consumes at the same rate in both problems—the consumption rate is a control in the problem of maximizing utility—then the investment strategies are equal only when the consumption function is linear in wealth on O, a rather surprising result. It then follows that the corresponding investment strategy is also linear in wealth and the implied utility function exhibits hyperbolic absolute risk aversion.

Keywords

Optimal control Probability of ruin Utility of consumption Investment/consumption decisions 

Jel Classification

G11 C61 

Mathematics Subject Classification (2000)

91B28 91B42 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Gwaiz M.A. (1992). Theory of Distributions. Monographs and Textbooks in Pure and Applied Mathematics 159. Marcel Dekker, New York Google Scholar
  2. 2.
    Barles G., Daher C. and Romano M. (1994). Optimal control on the L norm of a diffusion process. SIAM J. Cont. Optim. 32: 612–634 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bayraktar, E., Young, V.R.: Minimizing the lifetime shortfall or shortfall at death. Working Paper, Department of Mathematics, University of Michigan (2005). http://www.math.lsa. umich.edu/∼erhan/shortfall.pdfGoogle Scholar
  4. 4.
    Bayraktar, E., Young, V.R.: Minimizing the probability of lifetime ruin under borrowing constraints. Insur. Math. Econ. (to appear 2006)Google Scholar
  5. 5.
    Browne S. (1995). Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20: 937–958 zbMATHMathSciNetGoogle Scholar
  6. 6.
    Browne S. (1997). Survival and growth with a liability: Optimal portfolio strategies in continuous time. Math. Oper. Res. 22: 468–493 zbMATHMathSciNetGoogle Scholar
  7. 7.
    Browne S. (1999). Beating a moving target: optimal portfolio strategies for outperforming a stochastic benchmark. Financ. Stoch. 3: 275–294 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Browne S. (1999). The risk and rewards of minimizing shortfall probability. J. Portf. Manage. 25(4): 76–85 CrossRefGoogle Scholar
  9. 9.
    Dudley R.M. (2002). Real Analysis and Probability. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  10. 10.
    Fleming W.H. and Soner H.M. (1993). Controlled Markov Processes and Viscosity Solutions. Springer, New York zbMATHGoogle Scholar
  11. 11.
    Fleming W.H. and Zariphopoulou T. (1991). An optimal investment/consumption model with borrowing. Math. Oper. Res. 16: 802–822 zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Heinricher A.C. and Stockbridge R.H. (1991). Optimal control of the running max. SIAM J. Cont. Optim. 29: 936–953 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hipp C. and Plum M. (2000). Optimal investment for insurers. Insur. Math. Econ. 27: 215–228 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hipp C. and Taksar M. (2000). Stochastic control for optimal new business. Insur. Math. Econ. 26: 185–192 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Karatzas I. and Shreve S. (1998). Methods of Mathematical Finance. Springer, New York zbMATHGoogle Scholar
  16. 16.
    Merton R.C. (1992). Continuous-Time Finance (revised edition). Blackwell, Cambridge Google Scholar
  17. 17.
    Milevsky M.A., Ho K. and Robinson C. (1997). Asset allocation via the conditional first exit time or how to avoid outliving your money. Rev. Quant. Financ. Account. 9: 53–70 CrossRefGoogle Scholar
  18. 18.
    Milevsky M.A., Moore K.S. and Young V.R. (2006). Asset allocation and annuity-purchase strategies to minimize the probability of financial ruin. Math. Financ. 16: 647–671 zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Milevsky M.A. and Robinson C. (2000). Self-annuitization and ruin in retirement, with discussion. N. Am. Actuar. J. 4(4): 112–129 zbMATHMathSciNetGoogle Scholar
  20. 20.
    Pratt J.W. (1964). Risk aversion in the small and in the large. Econometrica 32: 122–136 zbMATHCrossRefGoogle Scholar
  21. 21.
    Schmidli H. (2001). Optimal proportional reinsurance policies in a dynamic setting. Scand. Actuar. J. 2001(1): 55–68 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tenenbaum M. and Pollard H. (1963). Ordinary Differential Equations. Dover, New York zbMATHGoogle Scholar
  23. 23.
    Young, V.R.: Optimal investment strategy to minimize the probability of lifetime ruin. N. Am. Actuar. J. 8(4), 105–126 (2004)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Young V.R. (2004). Optimal investment strategy to minimize the probability of lifetime ruin. N. Am. Actuar. J. 8(4): 105–126 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations