Finance and Stochastics

, Volume 10, Issue 3, pp 341–352 | Cite as

Bounds for Functions of Dependent Risks

  • Paul Embrechts
  • Giovanni Puccetti
Original Paper


The problem of finding the best-possible lower bound on the distribution of a non-decreasing function of n dependent risks is solved when n=2 and a lower bound on the copula of the portfolio is provided. The problem gets much more complicated in arbitrary dimensions. When no information on the structure of dependence of the random vector is available, we provide a bound on the distribution function of the sum of risks which we prove to be better than the one generally used in the literature.


Copulas Dependent risks Dependence bounds Fréchet bounds 

Mathematics Subject Classifications (2000)

60E15 60E05 

JEL Classifications



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Denuit M., Genest C., Marceau É. (1999) Stochastic bounds on sums of dependent risks. Insur Math Econ 25, 85–104CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Dhaene J., Denuit M., Goovaerts M.J., Kaas R., Vyncke D. (2002) The concept of comonotonicity in actuarial science and finance: theory. Insur Math Econ 31, 3–33CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Embrechts P., McNeil A.J., Straumann D. (2002). Correlation and dependence in risk management: properties and pitfalls. In: Dempster M. (eds). Risk management: value at risk and beyond. Cambridge University Press, Cambridge, pp. 176–223Google Scholar
  4. 4.
    Embrechts P., Höing A., Juri A. (2003) Using copulae to bound the Value-at-Risk for functions of dependent risks. Finance Stoch 7, 145–167CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Frank M.J., Nelsen R.B., Schweizer B. (1987) Best-possible bounds for the distribution of a sum – a problem of Kolmogorov. Probab Theory Related Fields 74, 199–211CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Makarov G.D. (1981) Estimates for the distribution function of the sum of two random variables with given marginal distributions. Theory Probab Appl 26, 803–806CrossRefGoogle Scholar
  7. 7.
    Moscadelli, M. The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee. Temi di discussione N. 517 Banca d’Italia, URL: (2004)Google Scholar
  8. 8.
    Nelsen R.B. (1999) An introduction to copulas. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  9. 9.
    Rachev S.T., Rüschendorf L. (1998) Mass transportation problems, vol. I–II. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  10. 10.
    Rüschendorf L. (1982) Random variables with maximum sums. Adv Appl Probab 14, 623–632CrossRefzbMATHGoogle Scholar
  11. 11.
    Sklar A. (1973) Random variables, joint distribution functions, and copulas. Kybernetika 9, 449–460MathSciNetzbMATHGoogle Scholar
  12. 12.
    Williamson R.C., Downs T. (1990) Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependence bounds. Int J Approx Reason 4, 89–158CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsETH ZurichZurichSwitzerland
  2. 2.Department of Mathematics for DecisionsUniversity of FirenzeFirenzeItaly

Personalised recommendations